An interval model for second order lambda calculus

  • Simone Martini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 283)


Maximal Element Interval Model Type Constructor Lambda Calculus Finite Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. Amadio, R., Bruce, K., Longo, G. [1986] “The Finitary Projection Model and the solution of higher order domain equations”, Proceedings LICS 86, IEEE (pp.122–130).Google Scholar
  2. Barendregt, H. [1984], The lambda calculus; its syntax and semantics, Revised edition, North Holland.Google Scholar
  3. Bruce K., Meyer A. [1984] “The semantics of second order polymorphic lambda-calculus”, Symposium on Semantics of Data Types (Kahn, MacQueen, Plotkin eds.), LNCS 173, Springer-Verlag (pp. 131–144).Google Scholar
  4. Bruce, K., Meyer, A., Mitchell, J. [1985] “The semantics of second order lambda-calculus”, Information and Control (to appear).Google Scholar
  5. Cardelli, L. [1985] “Semantics of multiple inheritance”, Information and Control (to appear).Google Scholar
  6. Cardelli, L., Wegner, P. [1985] “On understanding types, data abstraction and polymorphism”, Computing Surveys, vol 17(4) (pp. 471–522).Google Scholar
  7. Cartwright R. [1984] “Types as Intervals”, Proc. Popl 84, ACM.Google Scholar
  8. Di Gianantonio, P. [1987] “The subtype relation in the interval model” (in italian), Master Thesis, Dip. di Informatica, Univ. di Pisa.Google Scholar
  9. Girard, J.-Y. [1985] “The system F of variable types, fifteen years later”, Theor. Comp. Sc. (to appear).Google Scholar
  10. Hayashi, S. [1985] “Adjunction of semifunctors: categorical structures in no-extensional lambda calculus”, Theor. Comp. Sc.,vol 41(1) (pp. 95–104).Google Scholar
  11. Kainen, P.C. [1971] “Weak adjoint functors”, Math. Z. 122 (pp.1–9).Google Scholar
  12. Longo, G. [1987] “On Church's formal theory of (computable) functions”, Church Thesis Conference Proceedings, Annals Pure App. Logic (to appear).Google Scholar
  13. MacQueen D., Plotkin G., Sethi R. [1986] “An ideal model for recursive polymorphic types”,Information and Control, vol 71(1–2) (pp.95–130).Google Scholar
  14. Martini, S. [1986] “Categorical models for typed and type-free non-extensional lambda-calculus”, preprint, Pisa.Google Scholar
  15. McCracken N. [1984] “A finitary retract model for the polymorphic lambda-calculus,” Information and Control (to appear).Google Scholar
  16. Meyer, A., Mitchell J.C., Moggi E., Statman R. [1987] “Empty types in polymorphic lambda calculus”, (ACM Conference on) POPL '87, Münich.Google Scholar
  17. Scott, D. [1980] “A space of retracts”, manuscript, Bremen.Google Scholar
  18. Wiweger A. [1984] “Pre-adjunction and λ-algebraic theories”, in Colloq. Math. 48(2), 153–165.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Simone Martini
    • 1
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations