Advertisement

The category of Milner processes is exact

  • David B. Benson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 283)

Abstract

This analysis has shown that there are several levels of ideas used in categories of Park-Milner processes. First and foremost, the theory of exact categories provides the fundamental structures. Second, the idea of rooted processes means one is attempting to work in a bigpointed category. As this brief analysis shows, bipointed categories have a rather weak collection of nice properties—at least known to me. Third, additive idempotence introduces considerable additional structure, and it is here that the non-unital aspects of the A-modules play an important rôle.

Keywords

Pure State Short Exact Sequence Sequential Composition Forgetful Functor Exact Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. A. Arbib and E. G. Manes, Fuzzy Machines in a Category, Bull. Austral. Math. Soc. 13, 1975, 169–210.Google Scholar
  2. [2]
    O. Ben-Shachar, Bisimulation of State Automata, MS thesis, Washington State University, 1986.Google Scholar
  3. [3]
    D. B. Benson, Counting Paths: Nondeterminism as Linear Algebra, IEEE Trans. Softw. Eng. SE-10, 1984, 785–794.Google Scholar
  4. [4]
    D. B. Benson, String Algebra and Coalgebra, Automata and Coautomata, ms.Google Scholar
  5. [5]
    D. B. Benson and O. Ben-Shachar, Bisimulation of State Automata, IEEE Symp. Logic in Computer Science, Cambridge, MA, 1986.Google Scholar
  6. [6]
    D. B. Benson and O. Ben-Shachar, Bisimulation of Automata, WSU Comput. Sci. Tech. Rpt. CS-87-162.Google Scholar
  7. [7]
    D. B. Benson and I. Guessarian, Iterative and Recursive Matrix Theories, J. Algebra 86, 1984, 302–314.Google Scholar
  8. [8]
    D. B. Benson and I. Guessarian, Algebraic Solutions to Recursion Equations, JCSS, to appear.Google Scholar
  9. [9]
    D. B. Benson and J. Tiuryn, Fixed Points in Free Process Algebras with Silent Events, Part I., WSU Comput. Sci. Tech. Rpt. CS-86-152.Google Scholar
  10. [10]
    J. A. Bergstra and J. W. Klop, Algebra of Communicating Processes with Abstraction, Theoret. Comput. Sci. 37, 1985, 77–121.Google Scholar
  11. [11]
    H.-B. Brinkmann and D. Puppe, Abelsche und Exakte Kategorien; Korrespondenzen, Springer-Verlag Lecture Notes in Mathematics 96, 1969.Google Scholar
  12. [12]
    H. Herrlich and G. E. Strecker, Category Theory, second edition, Heldermann-Verlag, Berlin, 1979.Google Scholar
  13. [13]
    W. Kuich and A. Salomaa, Semirings, Automata, Languages, Springer-Verlag, Berlin, 1986.Google Scholar
  14. [14]
    S. MacLane, Categories for the Working Mathematician, Springer-Verlag, New York, 1971.Google Scholar
  15. [15]
    M. G. Main, Demons, Catastropies and Communicating Processes, Univ. Colorado Tech. Rpt. CU-CS-343-86.Google Scholar
  16. [16]
    M. G. Main and D. B. Benson, Functional behavior of nondeterministic and concurrent programs, Inform. and Control 62, 1984, 144–189.Google Scholar
  17. [17]
    E. G. Manes, ed., Category Theory Applied to Computation and Control, Springer-Verlag LNCS 25, 1975.Google Scholar
  18. [18]
    E. G. Manes, A Class of Fuzzy Theories, J. Math. Analysis and Applications 85, 1982, 409–451.Google Scholar
  19. [19]
    E. G. Manes, Additive Domains, Springer-Verlag LNCS 239, 1986, 184–195.Google Scholar
  20. [20]
    E. G. Manes, Weakest preconditions: Categorical insights, Springer-Verlag LNCS 240, 1986, 182–197.Google Scholar
  21. [21]
    E. G. Manes, Assertional Categories, Proc. Third Workshop on Math. Found. Program. Semantics, Tulane, April 1987, to appear.Google Scholar
  22. [22]
    R. Milner, Calculi for Synchrony and Asynchrony, Theoret. Comput. Sci. 25, 1983, 267–310.Google Scholar
  23. [23]
    S. B. Niefield, Adjoints to Tensor for Graded Algebras and Coalgebras, J. Pure Appl. Alg. 41 1986, 255–261.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • David B. Benson
    • 1
  1. 1.Computer Science DepartmentWashington State UniversityPullmanUSA

Personalised recommendations