An equational presentation of higher order logic

  • Thierry Coquand
  • Thomas Ehrhard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 283)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Berry]
    Berry, G. “Stable models of the typed λ-calculi” ICALP, Springer-Verlag, LNCS 62, 1978 pp. 72–89Google Scholar
  2. [BreMey]
    V. Breazu-Tannen and A. Meyer. “Lambda Calculus with Constrained Types” Abstract (1985)Google Scholar
  3. [Burroni]
    A. Burroni. “Algèbres graphiques” Cahiers de Topologie et Geometrie Differentielle Volume XXII-3 1981Google Scholar
  4. [CAM]
    G. Cousineau, P.L. Curien and M. Mauny. “The Categorical Abstract Machine.” In Functional Programming Languages and Computer Architecture, Ed. J. P. Jouannaud, Springer-Verlag LNCS 201 (1985) 50–64.Google Scholar
  5. [CoGuWi]
    T. Coquand, C. Gunter, G. Winskel. “Polymorphism and domain equations” Technical report Cambridge no 107.Google Scholar
  6. [Curien 86]
    P. L. Curien. “Categorical Combinators, Sequential Algorithms and Functional Programming.” Research Notes in Theoretical computer Science, Pitman (1986).Google Scholar
  7. [Curien 87]
    P. L. Curien “Categorical combinators for (existential) quantification” unpublished notes.Google Scholar
  8. [Bruijn]
    N.G. de Bruijn. “Lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem.” Indag. Math. 34,5 (1972), 381–392.Google Scholar
  9. [Church]
    A. Church. “A formulation of the simple theory of types.” Journal of Symbolic Logic 5,1 (1940) 56–68.Google Scholar
  10. [GabUlm]
    P. Gabriel and F. Ulmer. “Lokal Präsentierbare Kategorien” Lecture Notes in Mathematics, Vol. 221 (Springer, Berlin).Google Scholar
  11. [Gand]
    R.O. Gandy. “On the axiom of extensionality-Part I.” J.S.L. 21 (1956).Google Scholar
  12. [Girard72]
    J.Y. Girard. “Interprétation fonctionnelle et élimination des coupures dans l'arithmétique d'ordre supérieure.” Thèse d'Etat, Université Paris VII (1972).Google Scholar
  13. [Girard85]
    J.Y. Girard. “The system F of variable types, fifteen years later” in TCS 86.Google Scholar
  14. [Gunter85]
    C. Gunter. “Profinite Solutions for Recursive Domain Equations” PhD thesis, CMU, (1985).Google Scholar
  15. [Howard]
    W. A. Howard. “The formulæ-as-types notion of construction.” Unpublished manuscript (1969). Reprinted in to H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Eds J. P. Seldin and J. R. Hindley, Academic Press (1980).Google Scholar
  16. [Huet]
    G. Huet. “Cartesian closed categories and Lambda-Calculus” in Combinators and functional programming languages Eds P.L. Curien, G. Cousineau et B. Robinet. LNCS 242Google Scholar
  17. [HyJoPi]
    J.M.E. Hyland, P.T. Johnstone, A.M. Pitts. “Tripos theory.” Math. Proc. Camb. Phil. Soc. 88 (1980).Google Scholar
  18. [Lambek-Scott]
    J. Lambek and P. J. Scott. “Introduction to higher order categorical logic” Cambridge studies in advanced mathematics, Cambridge University Press, 1986.Google Scholar
  19. [Lawvere]
    Lawvere. “Adjointness in foundations” Dialectica 23 (1969) 281–296.Google Scholar
  20. [Martin-Löf]
    P. Martin-Löf. “Intuitionistic Type Theory.” Bibliopolis (1982).Google Scholar
  21. [McCracken]
    N. McCracken. “An investigation of a programming language with a polymorphic type structure.” Ph.D. Dissertation, Syracuse University (1979).Google Scholar
  22. [Pare-Schu]
    R. Paré, D. Schumacher. “Indexed Categories and Their Applications.” Springer-Verlag, Lecture Notes in Mathematics, 661.Google Scholar
  23. [Plotkin-Smyth]
    M.B. Plotkin and G.D. Smyth. “The category-theoretic solution of recursive domain equations” SIAM J. COMPUT. Vol. 11, No 4, November 1982Google Scholar
  24. [Scott]
    D. Scott. “Relating Theories of the Lambda-Calculus.” in To H. B. Curry: Essays on Combinatory Logic, Lambda-calculus and Formalism, Eds. J. P. Seldin and J. R. Hindley, Academic Press (1980).Google Scholar
  25. [Seely 82]
    R.A.G. Seely. “Hyperdoctrines, natural deduction and the Beck condition” Zeitschrift für Mat. Logik und Grundlagen d. Math. 29 505–542.Google Scholar
  26. [Seely 84]
    R.A.G Seely. “Locally Cartesian Closed Categories and Type Theory” Math. Proc. Camb. Phil. Soc. 95, 1984.Google Scholar
  27. [Seely 86]
    R.A.G. Seely. “Categorical Semantics for Higher Order Polymorphic Lambda Calculus” Draft.Google Scholar
  28. [Stoy]
    J.E. Stoy. “Denotational Semantics: the Scott-Strache Approach to the Programming Language Theory” The M.I.T. Press, Cambridge, Massachussetts, and London, England.Google Scholar
  29. [Takeuti]
    G. Takeuti. “Proof theory.” Studies in Logic 81 Amsterdam (1975).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Thierry Coquand
    • 1
  • Thomas Ehrhard
    • 1
  1. 1.INRIAENS and Cambridge

Personalised recommendations