Polymorphism is set theoretic, constructively

  • A. M. Pitts
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 283)


Lambda Calculus Equality Judgement Terminal Object Full Embedding Binary Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B]
    J. Bénabou, Fibred categories and the foundations of naive category theory, J. Symbolic Logic 50(1985) 10–37.Google Scholar
  2. [BM]
    K.B. Bruce and A.R. Meyer, The semantics of second order polymorphic lambda calculus. In: G. Kahn et al (eds), Semantics of Data Types, Lecture Notes in Computer Science No.173 (Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1984) pp 131–144.Google Scholar
  3. [CCM]
    G. Cousineau, P.L. Curien and M. Mauny, The categorical abstract machine. In: J.P. Jouannaud (ed.), Functional Programming Languages and Computer Architecture, Lecture Notes in Computer Science No.201 (Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985) pp 50–64.Google Scholar
  4. [CE]
    T.Coquand and T.Ehrhard, An equational presentation of higher order logic. In this volume.Google Scholar
  5. [CFS]
    A.Carboni, P.J.Freyd and A.Scedrov, in preparation.Google Scholar
  6. [Cu]
    P.L. Curien, Categorical combinators, sequential algorithms and functional programming, Research Notes in Theoretical Computer Science (Pitman, London, 1986).Google Scholar
  7. [F]
    M. Fourman, Sheaf models for set theory, J. Pure Appl. Algebra 19(1980) 91–101.Google Scholar
  8. [FS]
    P.J.Freyd and A.Scedrov, Some semantic aspects of polymorphic lambda calculus. In: Proc. 2nd Annual Symp. on Logic in Computer Science (IEEE, 1987) pp 315–319.Google Scholar
  9. [G1]
    J.-Y.Girard, Interprétation fonctionelle et elimination des coupures dans l'arithmétique d'ordre supérieur, Thèse de Doctorat d'Etat (Paris, 1972).Google Scholar
  10. [G2]
    J.-Y. Girard, The system F of variable types, fifteen years later, Theoretical Computer Science 45(1986) 159–192.Google Scholar
  11. [Gr]
    J.W. Gray, Fibred and cofibred categories. In: S. Eilenberg et al (eds), Proc. LaJolla Conference on Categorical Algebra (Springer-Verlag, Berlin-Heidelberg, 1966) pp 21–83.Google Scholar
  12. [H]
    J.M.E. Hyland, The effective topos. In: A.S. Troelstra and D. vanDalen (eds), The L.E.J.Brouwer Centenary Symposium (North-Holland, Amsterdam, 1982) pp 165–216.Google Scholar
  13. [HRR]
    J.M.E.Hyland, E.Robinson and G.Rosolini, Discrete objects in the effective topos. To appear.Google Scholar
  14. [J]
    P.T. Johnstone, Topos Theory, L.M.S. Monographs No.10 (Academic Press, London, 1977).Google Scholar
  15. [LS]
    J.Lambek and P.J.Scott, Introduction to Higher Order Categorical Logic, Cambridge Studies in Advanced Mathematics No.7 (Cambridge University Press, 1986).Google Scholar
  16. [L]
    F.W. Lawvere, Equality in hyperdoctrines and comprehension schema as an adjoint functor. In: A. Heller (ed.), Proc. New York Symp. on Applications of Categorical Algebra (Amer. Math. Soc., Providence, 1970) pp 1–14.Google Scholar
  17. [McC]
    D.C. McCarty, Realizability and recursive set theory, Annals Pure Appl. Logic 32(1986) 153–183.Google Scholar
  18. [P]
    A. Poigné, Tutorial on category theory and logic. In: D. Pitt et al (eds), Category theory and computer programming, Lecture Notes in Computer Science No.240 (Springer-Verlag, Berlin-Heidelberg-New York, 1986) pp 103–142.Google Scholar
  19. [PS]
    R. Paré and D. Schumacher, Abstract families and the adjoint functor theorems. In: P.T. Johnstone and R. Paré (eds), Indexed Categories and their Applications, Lecture Notes in Mathematics No.661 (Springer-Verlag, Berlin-Heidelberg-New York, 1978) pp 1–125.Google Scholar
  20. [R1]
    J.C. Reynolds, Types, abstraction and parametric polymorphism, Information Processing 83(1983) 513–523.Google Scholar
  21. [R2]
    J.C. Reynolds, Polymorphism is not set-theoretic. In: G. Kahn et al (eds), Semantics of Data Types, Lecture Notes in Computer Science Vol.173 (Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1984) pp 145–156.Google Scholar
  22. [Sc1]
    D.S. Scott, Relating theories of the lambda calculus. In: J.R. Hindley and J.P. Seldin (eds), To H.B.Curry: essays on combinatory logic, lambda calculus and formalism (Academic Press, London, 1980) pp 403–450.Google Scholar
  23. [Sc2]
    D.S.Scott, The presheaf model for set theory. University of Oxford, February 1980. Manuscript.Google Scholar
  24. [Se]
    R.A.G.Seely, Categorical semantics for higher order polymorphic lambda calculus, J. Symbolic Logic, to appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • A. M. Pitts
    • 1
  1. 1.Mathematics DivisionUniversity of SussexBrightonEngland

Personalised recommendations