Categories and effective computations

  • G. Rosolini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 283)


Category Theory Full Subcategory Intuitionistic Logic Principal Ideal Closure Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Curien, P.-L. & Obtułowicz, A. [1986] Partiality and cartesian closedness, typescript, 1986Google Scholar
  2. DiPaola, R. & Heller, A. [1986] Dominical categories, to appear in Journ. Symb. Logic, 1986Google Scholar
  3. Eilenberg, S. & Kelly, G.M. [1966] Closed categories, in Proceedings of the Conference on Categorical Algebra (edited by S. Eilenberg, D.K. Harrison, S. MacLane & H. Röhrl), Springer-Verlag, Berlin (1966) 421–562Google Scholar
  4. Eršov, Ju.L. [1973] Theorie der Numerierungen I, in Zeitschrift für Math. Log. (4) 19 (1973) 289–388Google Scholar
  5. Heller, A. [1985] Dominical categories and recursion theory, in Atti della Scuola di Logica 2, Università di Siena (1985) 339–344Google Scholar
  6. Hoehnke, H.J. [1977] On partial algebras, in Col. Math. Soc. J. Bolyai 29 (1977) 373–412Google Scholar
  7. Hyland, J.M.E. [1982] The effective topos in The L.E.J. Brouwer Centenary Symposium (edited by A.S. Troelstra & D. van Dalen), North-Holland Publishing Company, Amsterdam (1982) 165–216Google Scholar
  8. Longo, G. & Moggi, E. [1984] Cartesian closed categories and partial morphisms for effective type structures, in International Symposium on Semantics of Data Types (edited by G. Kahn, D.B. McQueen & G. Plotkin), Lecture Notes in Computer Science 173, Springer-Verlag, Berlin (1984) 235–255Google Scholar
  9. McCarty, D.C. [1984] Realizability and Recursive Mathematics, D.Phil. thesis, University of Oxford, 1984Google Scholar
  10. Mulry, P. [1981] Generalised Banach-Mazur functionals in the topos of recursive sets, in J. Pure Appl. Alg. 26 (1981) 71–83Google Scholar
  11. Obtułowicz, A. [1986] The logic of categories of partial functions and its applications, in Diss. Math. 141 (1986)Google Scholar
  12. Plotkin, G. [1985] Denotational Semantics with Partial Functions, Lectures at the C.S.L.I. Summer School, Stanford, July1985Google Scholar
  13. Plotkin, G.D. & Smyth, M.B. [1982] The category-theoretic solution of recursive domain equations, in SIAM J. Comp. 11 (1982) 761–783Google Scholar
  14. Robinson, E.P. & Rosolini, G. [1986] Categories of partial maps, Quaderno del Dipartimento di Matematica 18, Università di Parma, 1986Google Scholar
  15. Rosolini, G. [1986] Continuity and effectiveness in topoi, D.Phil. thesis, University of Oxford, 1986Google Scholar
  16. Scott, D.S. [1982] Domains for denotational sematics, in Automata, Languages and Programming, Ninth Colloquium, Arahus, Denmark (edited by M. Nielsen & E.M. Schmidt), Lecture Notes in Computer Science 140, Springer-Verlag, Berlin (1982) 677–718Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • G. Rosolini
    • 1
    • 2
  1. 1.Department of Pure Mathematics and Mathematical StatisticsCambridgeEngland
  2. 2.Dipartimento di MatematicaUniversità degli StudiParmaItaly

Personalised recommendations