A theory for natural modelisation and implementation of functions with variable arity

  • Patrick Bellot
  • Véronique Jay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 274)


The aim of this article is to provide a new theorical framework based on combinators for the study and implementation of applicative programming languages. This formal theory can be viewed as a Computability theory where functions are defined in a natural and usable way because Curryfication is abolished. This allows short definitions of functions and fast graph reduction machines.


Natural Number Computable Function Functional Language Conservative Extension Argument Manipulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

6 References

  1. [Arvind 82]
    Arvind, K.P. Gostelow The U-interpreter. IEEE Computer. vol. 15, pp. 42–49, Feb. 1982.Google Scholar
  2. [Backus 78]
    J.W. Backus Can Programming be liberated from the Von Neumann style? A functional style and its Algebra of Programs, CACM Vol. 1, no 8, pp 613–641, 1978.Google Scholar
  3. [Barendregt 81]
    H.P. Barendregt The Lambda-Calculus, its syntax and semantics, Studies in Logic and the Foundations of Mathematics, Vol. 103, North Holland, 1981.Google Scholar
  4. [Belkhir 86]
    A. Belkhir Programmation Fonctionnelle et Parallèlisme, Rapport Gréco de Programmation 1986.Google Scholar
  5. [Bellot 86a]
    P. Bellot Graal: a functional programming system with uncurryfied combinators and its reduction machine. ESOP 86, LNCS 213, B. Robinet ed., pp. 82–98, Saarbrucken, 1986.Google Scholar
  6. [Bellot 86b]
    P. Bellot Sur les sentiers du Graal, étude, conception et réalisation d'un langage de programmation sans variable. Thèse d'Etat, UPMC Paris 6, Rapport LITP 86-62, 1986.Google Scholar
  7. [Bellot 87a]
    P. Bellot Proposal for a natural formalization of functional programming concepts, submitted to publication at RAIRO, 1987.Google Scholar
  8. [Cardelli 85]
    L. Cardelli Compiling a Functional Language, 1984 ACM Symposium on Lisp and Functional Programming, Austin, Texas, 1984.Google Scholar
  9. [Chailloux 84]
    J. Chailloux, M. Devin, J-M. Hullot Lelisp, a portable and efficient Lisp system, 1984 ACM Symposium on Lisp and Functional Programming, Austin, Texas, 1984.Google Scholar
  10. [Cousineau 85]
    G. Cousineau, P-L. Curien, M. Mauny, A. Suàrez Combinateurs Catégoriques et Implémentation des languages fonctionnels, 13th Spring School of the LITP, LNCS. 242. G. Cousineau, P-L. Curien, B. Robinet ed., pp. 85–103. Val d'Ajol, France, 1985.Google Scholar
  11. [Curry 58]
    H.B. Curry, R. Feys Combinatory Logic Vol I, North Holland, 1958.Google Scholar
  12. [Cutland 80]
    N.J. Cutland Computability, an introduction to recursive function theory, Cambridge University Press, 1980.Google Scholar
  13. [Dennis 74]
    J.B. Dennis The varieties of DataFlow computers, IEEE Int. Conf. on Distributed Systems, 1979.Google Scholar
  14. [Glaser 84]
    H. Glaser, C. Hankin, D. Till Principles of Functional Programming. Prentice/Hall International, 1984.Google Scholar
  15. [Godel 31]
    K. Godel Uber formal unentscheidbare Satze des Principia Mathematica und verwandter System I, english translation in M. Davis, The undecidable, Raven N.Y. 1965.Google Scholar
  16. [Hindley 86]
    J.R. Hindley, J.P. Seldin Introduction to Combinators and Lambda-Calculus. London Mathematical Society, Student Texts 1, Cambridge University Press, 1986.Google Scholar
  17. [Klop 80]
    J.W. Klop Combinatory Reduction Systems, Ph.D. Thesis, University of Amsterdam, 1980.Google Scholar
  18. [Mendelson 64]
    E. Mendelson Introduction to Mathematical Logic, Van Nostrand, 2nd ed., 1979.Google Scholar
  19. [ML 84]
    The ML handbook, Rapport Inria, 1984.Google Scholar
  20. [Robinet 82]
    B. Robinet Combinateurs récurrents et itérateurs de Church, Rapport LITP 82-1, 1982.Google Scholar
  21. [Rogers 67]
    H. Rogers Theory of Recursive Functions and Effective Computability, McGraw Hill, N.Y., 1967.Google Scholar
  22. [Strong 68]
    H.R. Strong Algebraically generalized recursive function theory, IBM Journal for Research and Development, nov. 1968.Google Scholar
  23. [Turner 79]
    D.A. Turner A new implementation technique for applicative language, Software-Practice and Experience, Vol. 9, pp. 31–49, 1979.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Patrick Bellot
    • 1
  • Véronique Jay
    • 2
  1. 1.Centre Scientifique IBM-FranceParisFrance
  2. 2.LITP Paris 6. UA 248Paris Cedex 05France

Personalised recommendations