Advertisement

Anisotropy of relaxation of acoustic phonons scattered by isotopic impurities

  • Zygmunt K. Petru
Contributed Papers
Part of the Lecture Notes in Physics book series (LNP, volume 285)

Abstract

Exact solutions of the phonon Boltzmann equation describing relaxation of acoustic phonons scattered by isotopic impurities are found for the case of spatially homogeneous systems. The solutions depend on the symmetry of the system. If the sym metry of a crystal or the symmetry of the disturbed phonon distribution function is lower than cubic, the effective relaxation time is elongated as compared to the value obtained within the relaxation-time approximation. This new relaxation time is strongly direction-dependent.

Keywords

Collision Rate Acoustic Phonon Hexagonal Symmetry Tetragonal Symmetry Elastic Continuum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.E. Peierls, Quantum Theory of Solids (Oxford, Clarendon Press, 1955).Google Scholar
  2. [2]
    F.H. Claro and C.H. Wannier, J.Math.Phys. 12,92 (1971).CrossRefGoogle Scholar
  3. [3]
    R.G. Ulbrich, V. Narayanamurti and M.A. Chin, Phys.Rev.Lett.45,1432 (1980)CrossRefGoogle Scholar
  4. [4]
    M. Lax, V. Narayanamurti, P. Hu and W. Weber, J.Phys.(Paris), Colloq. 42,C6–161 (1981).Google Scholar
  5. [5]
    S. Tamura, Phys.Rev.B27,858 (1983), B30,849(1984).Google Scholar
  6. [6]
    P.G. Klemens, in Solid State Physics, F.Seitz and D.Turnbull, eds.(Academic Press, New York, 1958), vol. 7.Google Scholar
  7. [7]
    Z.K. Petru, in Proc. 2nd Int.Conf. on Phonon Physics, J.Kollár, N.Croo, N.Menyhárd and T.Siklós, eds. (World Scientific, Singapore, 1985).Google Scholar
  8. [8]
    F.I. Fedorov, Theory of Elastic Waves in Crystals (Plenum, New York, 1968).Google Scholar
  9. [9]
    Z.K. Petru, Communication of JINR, No. E17-86-632 (1986).Google Scholar
  10. [10]
    E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals (Oxford, Clarendon Press, 1948), G. Doetsch, Anleitung zum Praktischen Gebrauch der LaplaceTransformation and Z-Transformation (Oldenbourg, Munchen, 1967).Google Scholar
  11. [11]
    G. Doetsch, Handbuch der Laplace-Transformation (Verlag Birkhauser, Basel,1950) vol. 1, Chapt.8.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Zygmunt K. Petru
    • 1
    • 2
  1. 1.Joint Institute for Nuclear ResearchDubnaSU
  2. 2.Institute of Theoretical PhysicsUniversity of Wroc«wWroc«wPoland

Personalised recommendations