Advertisement

Surface acoustic waves on real surfaces

  • Alexei A. Maradudin
Invited Talks I. Foundations
Part of the Lecture Notes in Physics book series (LNP, volume 285)

Keywords

Surface Wave Dispersion Curve Displacement Field Rayleigh Wave Spatial Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lord Rayleigh, Proc. Lond. Math. Soc. 17, 4 (1885).Google Scholar
  2. 2.
    See, for example, W. Prager, Introduction to Mechanics of Continuua (Ginn and Co., Boston, 1961), p. 91.Google Scholar
  3. 3.
    See, for example, L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon Press, New York, 1970), p. 102.Google Scholar
  4. 4.
    I. A. Viktorov, Akust. Zhur. 25, 1 (1979) [Soviet Physics-Acoustics 25, 1 (1979).]Google Scholar
  5. 5.
    A. A. Maradudin, in Modern Problems of Surface Physics, ed. I. J. Lalov (Bulgarian Academy of Sciences, Sofia, 1981), p. 11.Google Scholar
  6. 6.
    A. A. Maradudin, in Nonequilibrium Phonon Dynamics, ed. W. Bron (Plenum, New York, 1985), p. 395.Google Scholar
  7. 7.
    A. A. Maradudin, in Surface Waves in Plasmas and Solids, ed. S. Vukovic (World Scientific, Singapore, 1986), p. 220.Google Scholar
  8. 8.
    A. A. Maradudin, in Proceedings of the International Symposium on Surface Waves in Solids and Layered Structures, Novosibirsk, July 1–4, 1986 (to appear).Google Scholar
  9. 9.
    See, for example, A. A. Maradudin and W. M. Visscher, Z. Phys. B60, 215 (1985).CrossRefGoogle Scholar
  10. 10.
    P. Ryan and A. A. Maradudin (unpublished work).Google Scholar
  11. 11.
    Lord Rayleigh, Philos. Mag. 14, 70 (1907); Theory of Sound, vol. II, 2nd Ed. (Dover, New York, 1945), p. 89.Google Scholar
  12. 12.
    N. E. Glass, R. Loudon, and A. A. Maradudin, Phys. Rev. B24, 6843 (1981).Google Scholar
  13. 13.
    K. A. Ingebrigtsen and A. Tonning, Phys. Rev. 184, 942 (1968).CrossRefGoogle Scholar
  14. 14.
    F. Rischbieter, Acustica 16, 75 (1965).Google Scholar
  15. 15.
    P. V. H. Sabine, Electron. Lett. 6, 149 (1970).Google Scholar
  16. 16.
    L. M. Brekhovskikh, Akust. Zhur. 5, 288 (1959) [Soviet-PhysicsAcoustics 5, 288 (1960)].Google Scholar
  17. 17.
    N. E. Glass and A. A. Maradudin, J. Appl. Phys. 54, 796 (1983).CrossRefGoogle Scholar
  18. 18.
    Xuemei Huang and A. A. Maradudin (unpublished work).Google Scholar
  19. 19.
    A. A. Maradudin and D. L. Mills, Ann. Phys. (New York) 100, 262 (1976).CrossRefGoogle Scholar
  20. 20.
    A. A. Bulgakov and S. I. Khankina, Solid State Commun. 44, 55 (1982).CrossRefGoogle Scholar
  21. 21.
    V. R. Velasco and F. Garcia-Moliner, Physica Scripta 20, 111 (1979).Google Scholar
  22. 22.
    W. M. Ewing, W. S. Jardetsky, and F. Press, Elastic Waves in Layered Media (McGraw-Hill, New York, 1957).Google Scholar
  23. 23.
    A. E. H. Love, Some Problems of Geodynamics (Cambridge Univ. Press, London, 1911).Google Scholar
  24. 24.
    R. Stoneley, Proc. Roy. Soc. (London) A106, 416 (1924).Google Scholar
  25. 25.
    K. Sezawa, Bull. Earthquake Res. Inst. 3, 1 (1927).Google Scholar
  26. 26.
    H. F. Tiersten, J. Appl. Phys. 40, 770 (1969).CrossRefGoogle Scholar
  27. 27.
    I. urdoch, J. Mech. Phys. Solids 24, 237 (1976).Google Scholar
  28. 28.
    G. W. Farnell, in Acoustic Surface Waves, ed. A. A. Oliner (Springer-Verlag, New York, 1978), p. 13.Google Scholar
  29. 29.
    S. V. Bogdanov, M. D. Levin, and I. B. Yakovkin, Akust. Zhur. 15, 12 (1969) [Soviet Physics-Acoustics 15, 10 (1969)].Google Scholar
  30. 30.
    B. Djafari-Rouhani, L. Dobrzynski, V. R. Velasco, and F. GarciaMoliner, Surf. Sci. 110, 129 (1981).CrossRefGoogle Scholar
  31. 31.
    L. Dobrzynski and B. Djafari-Rouhani, in Vibrations at Surfaces, eds. R. Dandano, J. M. Gilles, and A. A. Lucas (Plenum, New York, 1982), p. 1.Google Scholar
  32. 32.
    B. A. Auld, Acoustic Fields and Waves in Solids, vol. II (John Wiley and Sons, New York, 1973), p. 101.Google Scholar
  33. 33.
    V. V. Krylov, Kristallografiya 27, 791 (1982) [Soviet Physics-Crystallography 27, 475 (1982)].Google Scholar
  34. 34.
    R. Normandin, M. Fukui, and G. I. Stegeman, J. Appl. Phys. 50, 81 (1979).CrossRefGoogle Scholar
  35. 35.
    R. Normandin, M. Fukui, and G. I. Stegeman, J. Appl. Phys. 50, 1131 (1979).CrossRefGoogle Scholar
  36. 36.
    See, for example, P. J. Vella, T. C. Padmore, G. I. Stegeman, and V.M. Ristic, J. Appl. Phys. 45, 1993 (1974).CrossRefGoogle Scholar
  37. 37.
    N. Kalyanasundaram, Int. J. Engng. Sci. 19, 279 (1981).CrossRefGoogle Scholar
  38. 38.
    N. Kalyanasundaram, Int. J. Engng. Sci. 19, 287 (1981).CrossRefGoogle Scholar
  39. 39.
    N. Kalyanasundaram, J. Acoust. Soc. Am. 72, 1518 (1982).Google Scholar
  40. 40.
    D. F. Parker and F. M. Talbot, in Nonlinear Deformation Waves, eds. U. Nigul and J. Engelbrecht (Springer-Verlag, New York, 1983), p. 397.Google Scholar
  41. 41.
    D. F. Parker, Physica 16D, 385 (1985).Google Scholar
  42. 42.
    D. F. Parker and F. M. Talbot, J. Elasticity 15, 389 (1985).CrossRefGoogle Scholar
  43. 43.
    T. Sakuma and Y. Kawanami, Phys. Rev. B29, 869 (1984).Google Scholar
  44. 44.
    T. Sakuma and Y. Kawanami, Phys. Rev. B29, 880 (1984).Google Scholar
  45. 45.
    T. Sakuma and T. Miyazaki, Phys. Rev. B33, 1036 (1986).Google Scholar
  46. 46.
    T. Sakuma and O. Saito, Phys. Rev. B35, 1294 (1987).Google Scholar
  47. 47.
    K. Bataille and F. Lund, Physica 6D, 95 (1982).Google Scholar
  48. 48.
    T. Taniuti and N. Yajima, J. Math. Phys. 14, 1389 (1973).CrossRefGoogle Scholar
  49. 49.
    See, for example, R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic Press, New York 1982), Chap. 8.Google Scholar
  50. 50.
    See, for example, D. R. Bland, Nonlinear Dynamic Elasticity (Blaisdell, Waltham, MA, 1969), p. 2ff.Google Scholar
  51. 51.
    Ref. 50, Eq. (1.30) and the expansion of the internal energy in terms of the Lagrangian finite strain parameters given, e.g. by K. Brugger, Phys. Rev. 133, A1611 (1964).CrossRefGoogle Scholar
  52. 52.
    Ref. 50, Eq. (1.16).Google Scholar
  53. 53.
    Some authors, however, object to the presence of such terms. See, for example, R. W. Lardner, J. Appl. Phys. 55, 3251 (1984).CrossRefGoogle Scholar
  54. 54.
    A. D. Boardman, G. S. Cooper, A. A. Maradudin, T. P. Shen, Phys. Rev. B34, 8273 (1986).Google Scholar
  55. 55.
    G. B. Witham, Linear and Nonlinear Waves (John Wiley and Sons, New York, 1974), p. 363.Google Scholar
  56. 56.
    H. C. Yuen and B. M. Lake, Phys. Fluids 18, 956 (1975).CrossRefGoogle Scholar
  57. 57.
    V. I. Karpman and E. M. Krushkal, Zh. Eksp. i. Teor. Fiz. 55, 530 (1968) [Soviet Physics-JETP 28, 277 (1969)].Google Scholar
  58. 58.
    Ref. 49, p. 504ff.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Alexei A. Maradudin
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaIrvineUSA

Personalised recommendations