First steps towards a theory of complexity over more general data structures

  • Volker Sperschneider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 270)


This paper contains some first steps towards a theory of complexity in the area of computations on more general data structures. Special structures are studied which show a highly pathological behaviour as regards complexity theory. Then we define what it means for a structure to be well-designed and treat examples of such structures.


Polynomial Time Complexity Theory Function Symbol Dynamic Logic Polynomial Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Braun,H. (1986) Komplexität von Berechnungen auf der Datenstruktur der binären Wörter mit Konkatenation, Interner Bericht der Fakultät für Informatik der Universität KarlsruheGoogle Scholar
  2. Blass, A., Gurevich, Y. (1984) Equivalence relations, invariants and normal forms, In:E. Börger, G. Hasenjaeger, D. Rödding (eds), Logic and Machines: Decision Problems and Complexity, LNCS 171, Springer, Berlin Heidelberg New York, pp.24–42Google Scholar
  3. Berman, P., Halpern, J.Y., Tiuryn, J. (1982) On the power of non-determinism in Dynamic Logic, In: Proceedings, Ninth Colloquium on Automata, Languages and Programming 82, LNCS 140, Springer, Berlin Heidelberg New York, pp. 48–60Google Scholar
  4. Harel, D. (1984) Dynamic Logic, In: D. Gabbey & F. Guenther (eds), Handbook of Philosophical Logic, Reidel Publishing, Dordrecht, pp. 496–604Google Scholar
  5. Hawrusik,F., Venkatamaran,K.N., Yasuhara,A. (1981) Classes of functions for computing on binary trees, STOC, pp. 19–27Google Scholar
  6. Kfoury,A.J., Urzyczyn,P. (1985) Necessary and sufficient conditions for the universality of programming formalisms, Acta Informatica, Vol. 22(4)Google Scholar
  7. Kfoury,A.J. (1983) Definability by programs in first-order structures, Theoretical Computer Science 25, pp. 1–66Google Scholar
  8. Matchey,M., Young,P. (1978) An introduction to the general theory of algorithms, North-HollandGoogle Scholar
  9. Sperschneider,V. (1985) Halbsymbolisches Rechnen als methodisches Werkzeug in der Komplexitätstheorie auf Datenstrukturen, Habilitationsschrift, Universität KarlsruheGoogle Scholar
  10. Stolboushkin, A.P., Taitslin, M.A. (1983) Deterministic Dynamic Logic is strictly weaker than Dynamic Logic, Information and Control, Vol. 57, pp. 48–55Google Scholar
  11. Stolboushkin, A.P. (1983) Regular Dynamic Logic is not interpretable in deterministic context-free Dynamic Logic, Information and Control, vol. 57, pp. 48–55Google Scholar
  12. Tiuryn,J. (1986) A simplified proof of DDL<DL, To appear in Information and ControlGoogle Scholar
  13. Urzyczyn,P. (1981) The unwind property in certain algebras, Information and Control, Vol. 50Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Volker Sperschneider
    • 1
  1. 1.Institut für Informatik IUniversität KarlsruheKarlruhe 1

Personalised recommendations