Advertisement

A setting for generalized computability

  • G. Germano
  • S. Mazzanti
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 270)

Keywords

Unary Function Turing Machine Recursive Function Computable Function Class Comp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [C]1.
    A. Church, An unsolvable problem for elementary number theory, Preliminary Report (abstract), Bull. Amer. Math. Soc. 41 (1935), 332–333.Google Scholar
  2. [C]2.
    A. Church, An unsolvable problem for elementary number theory, Amer. J. Math. 58 (1936), 345–363.Google Scholar
  3. [EE]1.
    S. Eilenberg and C.C. Elgot, Iteration and recursion, Proc. Nat. Acad. Sci. U.S.A. 61 (1968), 378–379.Google Scholar
  4. [EE]2.
    S. Eilenberg and C.C. Elgot, Recursiveness, New York, 1970.Google Scholar
  5. [G]1.
    K. Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. I, Monatsh. Math. Phys. 38 (1931), 173–198.Google Scholar
  6. [G]2.
    K. Gödel, On undecidable propositions of formal mathematical systems, (mimeography) Institute for Advanced Study, Princeton N.J., 1934.Google Scholar
  7. [GM]1.
    G. Germano and S. Mazzanti, Primitive iteration and unary functions, Ann. Pure Appl. Logic, to appear.Google Scholar
  8. [GM]2.
    G. Germano and S. Mazzanti, General iteration and unary functions, Preliminary Report.Google Scholar
  9. [GMS]1.
    G. Germano and A. Maggiolo-Schettini, Markov's algorithms without concluding formulas, 4th Congress for Logic, Methodology and Philosophy of Science, Bucharest 1971.Google Scholar
  10. [GMS]2.
    G. Germano and A. Maggiolo-Schettini, A characterization of partial recursive functions via sequence functions, Notices Amer. Math. Soc. 19 (1972), 332.Google Scholar
  11. [GMS]3.
    G. Germano and A. Maggiolo-Schettini, Quelques caracterizations des fonctions récursives partielles, C.R. Acad. Sci. Paris, Ser. A 276 (1973), 1325–1327.Google Scholar
  12. 4.
    G. Germano and A. Maggiolo-Schettini, Sequence-to-sequence recursiveness, Inform. Processing Lett. 4 (1975), 1–6.Google Scholar
  13. [HR]
    H. Rogers, Theory of recursive functions and effective computability, New York, 1967.Google Scholar
  14. [K]1.
    S.C. Kleene, General recursive functions of natural numbers, Math. Ann. 112 (1936), 727–742.Google Scholar
  15. [K]2.
    S.C. Kleene, Recursive predicates and quantifiers, Trans. Amer. Math. Soc. 53 (1943), 41–73.Google Scholar
  16. [ML]
    S. Mac Lane, Categories for the working mathematicians, New York, 1971.Google Scholar
  17. [MM]
    M. L. Minsky, Recursive unsolvability of Post's problem of “Tag” and other topics in the theory of Turing Machines, Annals of Math. 74 (1961), 437–455.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • G. Germano
    • 1
  • S. Mazzanti
    • 1
  1. 1.Dipartimento di InformaticaUniversita di PisaPisaItaly

Personalised recommendations