Domino threads and complexity

  • H. -D. Ebbinghaus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 270)


Turing Machine Connectability Problem Natural Code Hamiltonian Circuit Tape Head 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Büchi, J.R. (1962): Turing machines and the Entscheidungsproblem. Math. Annalen 148, 201–213Google Scholar
  2. Chlebus, B.S. (1986): Domino-tiling games. J.Comp.Syst.Sci. 32, 374–392Google Scholar
  3. Ebbinghaus, H.-D. (1982): Undecidability of some domino connectability problems. Z.Math.Log.Grundl.Math. 28, 331–336Google Scholar
  4. van Emde Boas, P. (1983): Dominoes are forever. In: 1st GTI Workshop, Paderborn, 75–95Google Scholar
  5. Fürer, M. (1984): The computational complexity of the unconstrained limited domino problem (with implications for logical decision problems). In: E. Börger, G. Hasenjaeger, D. Rödding (eds): Logic and Machines: Decision Problems and Complexity. LNCS 171, Springer-Verlag Berlin etc., 312–319Google Scholar
  6. Hanf, W. (1974): Nonrecursive tilings of the plane. I. J.Symb.Logic 39, 283–285Google Scholar
  7. Harel, D. (1983): Recurring dominoes: Making the highly undecidable highly understandable. In: M. Karpinski (ed.): Foundations of Computation Theory. LNCS 158, Springer-Verlag Berlin etc., 177–194Google Scholar
  8. Harel, D. (1984): A simple highly undecidable domino problem (or, A lemma on infinite trees, with applications). In: Proc. Logic and Comp. Conf., Clayton, Victoria, Australia, Jan. 1984Google Scholar
  9. Kahr, A.S., Moore, E.F., Wang, H. (1962): Entscheidungsproblem reduced to the AEA case. Proc. Nat. Acad. Sci. USA 48, 365–377Google Scholar
  10. Myers, D. (1979): Decidability of the tiling connectability problem. Notices AMS 19, A-441Google Scholar
  11. Savelsbergh, M.W.P., van Emde Boas, P. (1984): Bounded tiling, an alternative to satisfiability? In: G. Wechsung (ed.): Frege Conference 1984. Akademie-Verlag Berlin, 354–363Google Scholar
  12. Wang, H. (1961): Proving theorems by pattern recognition. II. Bell Syst. Techn. J. 40, 1–41Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • H. -D. Ebbinghaus
    • 1
  1. 1.Abteilung für mathematische Logik der UniversitätFreiburg im BreisgauFederal Republic of Germany

Personalised recommendations