Solutions for the distributed termination problem

  • Didier Ferment
  • Brigitte Rozoy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 269)


Considering a network of communicating finite state machines which exchange messages over Channels, we discuss the distributed termination problem in the more general context of asynchronous environment. We first whow that this problem is undecidable. Then we discuss the possibility of superimposing algorithms that detect termination. At least we examine the case of faulty processors.


Turing Machine Finite State Machine Termination Algorithm Previous Parameter Deadlock Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    K.R. APT. — Correctness proofs of distributed termination algorithms. — Tech. Report. 84-51; L.I.T.P. — Université Paris VI, 1984.Google Scholar
  2. [AR]
    K. APT, J.L. RICHIER. — Real time clocks versus virtual clocks. — T.R. 84-34, L.I.T.P. Université Paris VI, 1984.Google Scholar
  3. [B]
    L. BOUGE. — Symetric election in CSP. — T.R. 84-31. — L.I.T.P., Université Paris VI.Google Scholar
  4. [CM]
    K.M. CHANDY, J. MISRA. — A paradigm for detecting quiescent properties in distributed computations. — In: Apt K.R. (ed.) Logics and Models of concurrent systems. Springer Verlag Berlin, 11: 325–341, 1985.Google Scholar
  5. [DDS]
    D. DOLEV, C. DWORK, L. STOCKMEYER. — On the minimal synchronism needed for distributed consensus. — Proc. 24th. IEEE 1983. — Symp. on found of Comput. Sc.: 393–402.Google Scholar
  6. [DFG]
    E.W. DIJKSTRA, W.H. FEIJEN, A.J.M. Van GASTEREN. — Derivation of a termination detection algorithm for distributed computations. — Inf. Proc. Letters 16,5 (1983): 217–219.CrossRefGoogle Scholar
  7. [DS]
    E.W. DIJKSTRA, C.S. SCHOLTEN. — Termination detection for diffusing computations. — Inf. Proc. Letters 11, 1 (1980), 1–4.CrossRefGoogle Scholar
  8. [Fe]
    D. FERMENT. — Finite and not finite solutions for the distributed termination problem. — T.R. 86.11 — LITP, Université Paris, 1986.Google Scholar
  9. [Fr]
    N. FRANCEZ. — Distributed termination. — ACM, Toplas, 2, 1, pp. 42–45, 1980.Google Scholar
  10. [FeRo]
    D. FERMENT, B. ROZOY. — Possibility and impossibility of solutions for the distributed termination problem. — TR 86-8. — LITP, University Paris, 1986.Google Scholar
  11. [FrRo]
    N FRANCEZ, M. RODEH. — Achieving distributed termination without freezing. — IEEE — Trans. on software Engeniring, SE — 8, 3, pp. 287–292, 1982.Google Scholar
  12. [Ga]
    P. GASTIN. — Synchronisation d'un système asynchrone d'automates. — 1985. — T.R. LITP, Université Paris VII.Google Scholar
  13. [Go]
    M. GOUDA. — Distributed state exploration for protocol validation. — T.R. 185. — Dpt. of Comput. Sc. Univ. of Texas at Austin. — 1981.Google Scholar
  14. [Gr]
    M.G. GOUDA, L.E. ROSIER. — Priority networks of communicating finite state machines. — T.R. 83-10 — University of Texas at Austin OR SIAM Journal Computer, 14.3, 1985, pp. 569–584.Google Scholar
  15. [GGLR]
    M.G. GOUDA, E.M. GURARI, T.H. LAI, L.E. ROSIER. — Deadlock detection in systems of communicating finite state machines.Google Scholar
  16. [LS]
    C.W. LERMEN, F.B. SCHNEIDER. — Detecting distributed termination when processors can fail. — T.R. 80-449 — Cornell. University — NY.Google Scholar
  17. [Ma]
    F. MATTERN. — New algorithms for distributed termination detection in asynchronous message passing systems. — T.R. 42/85, SFB 124, University of Kaiserslautern, 1985.Google Scholar
  18. [Mi]
    J. MISRA. — Detecting termination of distributed computations using markers. — Proc. 2 annual Symp. on Princ. of dist. Comp. QUEBEC, p. 290–294, 1983.Google Scholar
  19. [Ra]
    S.P. RANA. — A distributed solution of the distributed termination problem. — Inf. Process letters, 17.1, 1983, pp. 43–46.Google Scholar
  20. [Ri]
    J.L. RICHIER. — Distributed termination in CSP. — Symetric solutions with minimal storage. — TR 84-49, LITP, Université Paris VII.Google Scholar
  21. [Ro]
    B. ROZOY. — (1) Model and complexity of termination detection for distributed computations. — Lect. Notes in Comput. Sc. 233, 1986, p. 564–572.Google Scholar
  22. [2]
    (2) Termination for distributed systems: model and cost. — To be published in: Computer and Artificial Intelligence, Slovak academy of Science, 1987.Google Scholar
  23. [T]
    R. TOPOR. — Detecting termination for distributed computation. — Inf. Proc. Lett. 18 (1984), 33–36.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Didier Ferment
    • 1
  • Brigitte Rozoy
    • 2
  1. 1.U.F.R. Maths & InformatiqueUniversité de PicardieAmiens
  2. 2.Labo. Informatique — Université — Esplanade de la PaixCaen

Personalised recommendations