Advertisement

Systolic algorithms for computing the visibility polygon and triangulation of a polygonal region

  • Tetsuo Asano
  • Hiroshi Umeo
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 269)

Abstract

This paper first presents a naive systolic algorithm for finding a closest point for each of n given points in linear time. Then, based on the algorithm, we propose linear time systolic algorithms for computing the visibility polygon and for trapezoidal partition or triangulation of a polygonal region which may contain holes. The visibility problem among n vertical line segments in the plane is also solved.

Keywords

Systolic Array Simple Polygon Geometric Problem Polygonal Region Vertical Line Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Aggarwal, B. Chazelle, L. Guibas, C. O'Dunlaing, and C. Yap; "Parallel computational geometry", Proc. of the IEEE Conf. on FOCS'85, pp.468–477, (1985).Google Scholar
  2. [2]
    E. Arnold, H.T. Kung, O. Menzilcioglu and K. Sarocky;"A systolic array computer", Proc. of the IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, pp.232–235, (1985).Google Scholar
  3. [3]
    Te. Asano;"An efficient algorithm for finding the visibility polygon for a polygonal region with holes", Trans. of IECE of Japan, Vol. E-68, No. 9, pp.557–559, (1985)Google Scholar
  4. [4]
    Ta. Asano;"Computational geometry and its applications", Joho-Shori, Vol. 25, No. 3, pp.208–221, (in Japanese), (1984).Google Scholar
  5. [5]
    Te. Asano, Ta. Asano;"Minimum partition of polygonal region into trapezoids", Proc. of IEEE Symp. on FOCS, pp.233–241, (1983).Google Scholar
  6. [6]
    Ta. Asano, Te. Asano, H. Imai;"Partitioning a polygonal region into trapezoids", to appear in J. of ACM, (1986).Google Scholar
  7. [7]
    T. Asano, T. Asano, L. Guibas, J. Hersberger, and H. Imai;"Visibility-polygon search and Euclidian shortest paths", Proc. of IEEE Symp. on FOCS, pp.154–164, (1985).Google Scholar
  8. [8]
    T. Asano, T. Asano, R.Y. Pinter;"Polygon triangulation:Efficiency and minimality", to appear in J. of Algorithms, (1986).Google Scholar
  9. [9]
    Te. Asano and H. Umeo;"Systolic algorithms for computing the visibility polygon and triangulation of a polygonal region", Tech. Rep. of IECE of Japan, pp.53–60, (1986).Google Scholar
  10. [10]
    B. Chazelle;"Computational Geometry on a systolic chip", IEEE Trans. on Computers, Vol. C-33, No. 9, pp.774–785, (1984).Google Scholar
  11. [11]
    H. El Gyndy and D. Avis;"A linear algorithm for computing the visibility polygon from a point", J. of Algorithms, Vol. 2, pp.186–197, (1981).CrossRefGoogle Scholar
  12. [12]
    A. Fournier and D.Y. Montuno;"Triangulating simple polygons and equivalent problems", ACM Trans. on Graphics, Vol. 3, No. 2, pp.153–174, (1984).Google Scholar
  13. [13]
    R. Kane and S. Sahni;"A systolic design rule checker", Proc. of the IEEE 21st Design Automation Conf., pp.243–250, (1984).Google Scholar
  14. [14]
    R. Kane and S. Sahni;"Systolic algorithms for functions on rectilinear polygons", Proc. of Int. Symp. on Circuits and Systems, pp.1203–1206, (1985).Google Scholar
  15. [15]
    H.T. Kung;"Let's dsign algorithms for VLSI systems", Proc. of the Caltech Conf. on VLSI (C.E. Deitz ed.), pp.55–90, (1979).Google Scholar
  16. [16]
    H.T. Kung and C.E. Leiserson;"Algorithms for VLSI processor arrays", in Chapter 8 of C.A. Mead and L.A. Conway "Introduction to VLSI Systems", Addison-Wesley, Reading, Massachusetts, (1980).Google Scholar
  17. [17]
    D. T. Lee;"Visibility of a simple polygon", Computer Vision, Graphics, and Image Processing, Vol. 22, pp.207–221, (1983).Google Scholar
  18. [18]
    D.T. Lee and F.P. Preparata;"Computational geometry-A survey", IEEE Trans. on Computers, Vol. C-33, No. 12, pp.1072–1101, (1984).Google Scholar
  19. [19]
    C.E. Leiserson;"Systolic priority queues", Proc. of the Caltech Conf. on VLSI(C.E. Deitz ed.), pp.199–214, (1979).Google Scholar
  20. [20]
    E. Lodi and L. Pagli;"A VLSI solution to the vertical segment visibility problem", IEEE Trans. on Computers, Vol. C-35, No.10, pp.923–928, (1986).Google Scholar
  21. [21]
    F.P. Preparata and M.I. Shamos;"Computational geometry, an introduction", Springer-Verlag, New York, p.390, (1985).Google Scholar
  22. [22]
    M. Sato and T. Ohtsuki;"An algorithm for partitioning polygonal regions in VLSI pattern design", Trans. of Information Processing Society of Japan, Vol. 27, No. 2, pp.269–272, (1986).Google Scholar
  23. [23]
    R.E. Tarjan and C.J. Van Wyk;"An O(n loglog n)-time algorithm for triangulating simple polygons", Manuscript, (July, 1986).Google Scholar
  24. [24]
    H. Umeo and Te. Asano;"A survey of recent studies on systolic computational geometry", Tech. Rep. of IECE of Japan, COMP 86-27, pp.83–94, (in Japanese), (1986).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Tetsuo Asano
    • 1
  • Hiroshi Umeo
    • 1
  1. 1.Osaka Electro-Communication UniversityOsakaJapan

Personalised recommendations