Deterministic simulation of idealized parallel computers on more realistic ones

  • H. Alt
  • T. Hagerup
  • K. Mehlhorn
  • F. P. Preparata
Invited Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 269)


We describe a non-uniform deterministic simulation of PRAMs on module parallel computers (MPCs) and on processor networks of bounded degree. The simulating machines have the same number n of processors as the simulated PRAM, and if the size of the PRAM's shared memory is polynomial in n, each PRAM step is simulated by O(log n) MPC steps or by O((log n)2) steps of the bounded-degree network. This improves upon a previous result by Upfal and Wigderson. We also prove an Ω((log n)2/log log n) lower bound on the number of steps needed to simulate one PRAM step on a bounded-degree network under the assumption that the communication in the network is point-to-point.

As an important part of the simulation of PRAMs on MPCs, we use a new technique for dynamically averaging out a given work load among a set of processors operating in parallel.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    L. Adleman: “Two Theorems on Random Polynomial Time”. Proc. 19'th Symp. Found. of Comp. Sci. (1978), 75–83.Google Scholar
  2. [AKS]
    M. Ajtai, J. Komlós, E. Szemerédi: “An O(n log n) Sorting Network”. Proc. 15'th ACM Symp. Theory of Comp. (1983), 1–9.Google Scholar
  3. [B]
    K.E. Batcher: “Sorting networks and their applications”. Proc. AFIPS Spring Joint Comp. Conf. 32 (1968), 307–314.Google Scholar
  4. [BH]
    A. Borodin, J.E. Hoperoft: “Routing, Merging, and Sorting on Parallel Models of Computation”. Proc. 14'th ACM Symp. Theory of Comp. (1982), 338–344.Google Scholar
  5. [FW]
    S. Fortune, J. Wyllie: “Parallelism in Random Access Machines”. Proc. 10'th ACM Symp. Theory of Comp. (1978), 114–118.Google Scholar
  6. [GG]
    O. Gabber, Z. Galil: “Explicit Constructions of Linear Size Concentrators and Superconcentrators”. Proc. 20'th Symp. Found. of Comp. Sci. (1979), 364–370.Google Scholar
  7. [K]
    D.J. Kuck: “A Survey of Parallel Machine Organization and Programming”. Computing Surveys 9:1 (1977), 29–59.CrossRefGoogle Scholar
  8. [KU]
    A.R. Karlin, E. Upfal: “Parallel Hashing — An Efficient Implementation of Shared Memory”. Proc. 18'th ACM Symp. Theory of Comp. (1986), 160–168.Google Scholar
  9. [L]
    T. Leighton: “Tight Bounds on the Complexity of Parallel Sorting”. Proc. 16'th ACM Symp. Theory of Comp. (1984), 71–80.Google Scholar
  10. [MV]
    K. Mehlhorn, U. Vishkin: “Randomized and Deterministic Simulations of PRAMs by Parallel Machines with Restricted Granularity of Parallel Memories”. Acta Informatica 21 (1984), 339–374.CrossRefGoogle Scholar
  11. [O]
    O. Ore: “Theory of Graphs”. American Mathematical Society, Providence, Rhode Island (1962).Google Scholar
  12. [PV]
    F.P. Preparata, J. Vuillemin: “The Cube-Connected Cycles: A Versatile Network for Parallel Computation”. Communications of the ACM 24:5 (1981), 300–309.CrossRefGoogle Scholar
  13. [R]
    J.H. Reif: “On the Power of Probabilistic Choice in Synchronous Parallel Computations”. Proc. 9'th Int. Coll. Automata, Languages and Programming (1982), 442–450.Google Scholar
  14. [U]
    E. Upfal: “A Probabilistic Relation Between Desirable and Feasible Models of Parallel Computation”. Proc. 16'th ACM Symp. Theory of Comp. (1984), 258–265.Google Scholar
  15. [UW]
    E. Upfal, A. Wigderson: How to Share Memory in a Distributed System”. Proc. 25'th Symp. Found. of Comp. Sci. (1984), 171–180.Google Scholar
  16. [VW]
    U. Vishkin, A. Wigderson: “Dynamic Parallel Memories”. Information and Control 56 (1983), 174–182.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • H. Alt
    • 1
  • T. Hagerup
    • 2
  • K. Mehlhorn
    • 2
  • F. P. Preparata
    • 3
  1. 1.Fachbereich MathematikFreie Universität BerlinBerlin 33FRG
  2. 2.Fachbereich 10, InformatikUniversität des SaarlandesSaarbrückenFRG
  3. 3.Coordinated Science LaboratoryUniversity of IllinoisUrbanaU.S.A.

Personalised recommendations