An algorithm for computing asynchronous automata in the case of acyclic non-commutation graphs

  • Y. Metivier
Formal Languages And Automata
Part of the Lecture Notes in Computer Science book series (LNCS, volume 267)


We compute an asynchronous automaton associated to a recognizable set closed modulo a partial commutation such that the non-commutation graph is without cycle.


Monoide partiellement commutatif reconnaissable automate asynchrone arbre 


Monoid partially commutative recognizable asynchronous automaton tree 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I.J.J. AALBERSBERG, G. ROZENBERG, Trace Theory — a survey, Technical report, Inst. of Appl. and Comp. Sci., University of Leiden, (1985).Google Scholar
  2. [2]
    R.CORI, Partially abelian monoids, Invited lecture STACS Orsay (1986), Rapport GRECO de Programmation 1.86, Bordeaux.Google Scholar
  3. [3]
    R. CORI and Y. METIVIER, Recognizable subsets of partially abelian monoids, Theoret. Comp. Sci. 38, (1985), 179–189.Google Scholar
  4. [4]
    R.CORI et Y.METIVIER, Approximation d'une trace, automates asynchrones et relation d'ordre dans les systèmes répartis, Technical report no 8708, Université de Bordeaux I, 1987.Google Scholar
  5. [5]
    R. CORI et D. PERRIN, Sur la reconnaissabilité dans les monoïdes partiellements commutatifs libres, RAIRO Inform. Theor. Vol. 19, (1985), 179–185.Google Scholar
  6. [6]
    S.EILENBERG, Automata, Languages and Machines, Vol. A, 1974, Academic Press.Google Scholar
  7. [7]
    M. P. FLE and G. ROUCAIROL, Maximal serializability of iterated transactions, Theoret. Comp. Sci. 38, (1985), 1–16.Google Scholar
  8. [8]
    M. LOTHAIRE, Combinatorics on words, Addison Wesley, 1983.Google Scholar
  9. [9]
    A. MAZURKIEWICZ, Traces, histories, graphs: instances of a process monoid, Lecture Notes in Comput. Sci. 176, 1984.Google Scholar
  10. [10]
    Y. METIVIER, On recognizable subsets of free partially commutative monoids, Lecture Notes in Comput. Sci, 226, 1986.Google Scholar
  11. [11]
    Y. METIVIER, An algorithm for computing asynchronous automata in the case of acyclic non-commutation graphs, Technical report Université de Bordeaux I, 1986.Google Scholar
  12. [12]
    E. OCHMANSKI, Regular behaviour of concurrent systems, in: EATCS Bulletin, (Oct. 1985).Google Scholar
  13. [13]
    C. PAPADIMITRIOU, The serializability of concurrent database updates, J.A.C.M. 26, (1979), 631–653.Google Scholar
  14. [14]
    D. PERRIN, Words over partially commutative alphabet, in: Combinatorial Algorithms on words, Ed.: A. APOSTOLICO and Z. GALIL, NATO ASI-Series. Vol. F12, Springer, (1985).Google Scholar
  15. [15]
    G. VIENNOT, Heaps of pieces, I: Basic definitions and combinatorial lemmas, Lecture Notes in Math. 1234, 1986, pp. 321–350.Google Scholar
  16. [16]
    W. ZIELONKA, Notes on asynchronous automata, technical report, Institute of Mathematics, Warsaw Technical University, Poland, (à paraitre dans RAIRO Inform. Theor.).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Y. Metivier
    • 1
  1. 1.U.E.R. de Mathématiques et d' InformatiqueUniversité de Bordeaux ITalenceFrance

Personalised recommendations