On recent trends in formal language theory

  • Juhani Karhumäki
Formal Languages And Automata
Part of the Lecture Notes in Computer Science book series (LNCS, volume 267)


Equivalence Problem Regular Language Free Semigroup Free Monoids Finite Alphabet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ACK]
    Albert, J., Culik II, K. and Karhumaki J. Test sets for context-free languages and algebraic systems of equations, Inform. Control 52 (1982) 172–186.CrossRefGoogle Scholar
  2. [AL1]
    Albert, M.H. and Lawrence J., A proof of Ehrenfeucht's Conjecture, Theoret. Comput. Sci. 41 (1985) 121–123.CrossRefGoogle Scholar
  3. [AL2]
    Albert, M.H. and Lawrence J., Test sets for finite substitutions, Theoret. Comput. Sci. 43 (1986) 117–122.Google Scholar
  4. [Be]
    Berstel, J., Transductions and Context-Free Languages (Teubner, Stuttgard, 1979).Google Scholar
  5. [BeP]
    Berstel, J. and Perrin, D., Theory of Codes (Academic Press, New York, 1986).Google Scholar
  6. [Bi]
    Bird, M., The equivalence problem for deterministic two-tape automata, J. Comput. System Sci. 7 (1973) 218–236.Google Scholar
  7. [BB]
    Book, R. and Brandenburg F.-J., Equality sets and complexity classes, SIAM J. Comput. 9 (1980) 729–743.Google Scholar
  8. [Br]
    Brandenburg, F.-J., A truly morphic characterization of recursively enumerable sets, LNCS 176 (1984) 205–213.Google Scholar
  9. [Cl]
    Claus, V., Some remarks on PCP(k) and related problems, Bull. EATCS 12 (1980) 54–61.Google Scholar
  10. [ChK]
    Choffrut, C. and Karhumaki, J., Test sets for morphisms with bounded delay, Discret. Appl. Math. 12 (1985) 93–101.Google Scholar
  11. [C1]
    Culik II, K., A purely homomorphic characterization of recursively enumerable sets, J. Assoc. Comput. Mach. 6 (1979) 345–350.Google Scholar
  12. [C2]
    Culik II, K., Homomorphisms: Decidability, Equality and Test Sets, in R. Book (ed.), Formal Language Theory, Perspectives and Open Problems (Academic Press, New York, 1980).Google Scholar
  13. [CuF]
    Culik II, K. and Fris, I., The decidability of the equivalence problem for DOL-systems, Inform. Control 33 (1977) 20–39.Google Scholar
  14. [CFS]
    Culik II, K., Fich, F.E. and Salomaa, A., A homomorphic characterization of regular languages, Discret. Appl. Math. 4 (1982) 149–152.Google Scholar
  15. [CuK1]
    Culik II, K. and Karhumaki, J., On equality sets for homomorphisms on free monoids with two generators. RAIRO Theor. Inform. 14 (1980) 349–369.Google Scholar
  16. [CuK2]
    Culik II, K. and Karhumaki, J., Systems of equations over a free monoid and Ehrenfeucht's Conjecture, Discret. Math. 43 (1983) 139–153.CrossRefGoogle Scholar
  17. [CuK3]
    Culik II, K. and Karhumaki, J., A new proof for the DOL sequence equivalence problem and its implications, in G. Rozenberg and A. Salomaa (eds), The Book of L (Springer, Berlin,1986).Google Scholar
  18. [CuK4]
    Culik II,K. and Karhumaki,J., The equivalence problem for single-valued two-way transducers (on NPDTOL languages) is decidable, SIAM J. Comput. (to appear).Google Scholar
  19. [CuK5]
    Culik II, K. and Karhumaki, J., The equivalence of finite valued transducers (on HDTOL languages) is decidable, Theoret. Comput. Sci. 47 (1986) 71–84.CrossRefGoogle Scholar
  20. [CuK6]
    Culik II,K. and Karhumaki,J., Systems of equations over a finitely generated free monoid having an effectively findable equivalent finite susbsystem, manuscript (1986).Google Scholar
  21. [CuD]
    Culik II, K. and Diamond, N.D., A homomorphic characterization of time and space complexity classes, Int. J. Comput. Math. 8 (1980) 207–222.Google Scholar
  22. [CuM]
    Culik II, K. and Maurer, H., On simple representation of language families, RAIRO Theor. Inform. 13 (1979) 241–250.Google Scholar
  23. [CuS1]
    Culik II, K. and Salomaa, A., On the decidability of homomorphism equivalence for languages. J. Comput. System Sci. 17 (1978) 163–175.CrossRefGoogle Scholar
  24. [CuS2]
    Culik II, K. and Salomaa, A., Test sets and checking words for homomorphism equivalence, J. Comput. System Sci. 20 (1980) 375–395.CrossRefGoogle Scholar
  25. [EKR1]
    Ehrenfeucht, A., Karhumaki, J. and Rozenberg, G., The (generalized) Post Correspondence Problem with lists consisting of two words is decidable, Theoret. Comput. Sci. 21 (1982) 119–144.CrossRefGoogle Scholar
  26. [EKR2]
    Ehrenfeucht, A., Karhumaki, J. and Rozenberg, G., On binary equality sets and a solution to the test set conjecture in the binary case, J. Alg. 85 (1983) 76–85.CrossRefGoogle Scholar
  27. [EhR1]
    Ehrenfeucht, A. and Rozenberg, G., Elementary homomorphisms and a solution to DOL sequence equivalence problem. Theoret. Comput. Sci. 7 (1978) 169–183.CrossRefGoogle Scholar
  28. [EhR2]
    Ehrenfeucht, A. and Rozenberg, G., On a bound for the DOL sequence equivalence problem, Theoret. Comput. Sci. 12 (1980) 339–342.CrossRefGoogle Scholar
  29. [E]
    Eilenberg, S., Automata, Languages and Machines, vol.A (Academic Press, New York, 1974).Google Scholar
  30. [EnR1]
    Engelfriet, J. and Rozenberg, G., Equality languages and fixed point languages, Inform. Control 43 (1979) 20–49.CrossRefGoogle Scholar
  31. [EnR2]
    Engelfriet, J. and Rozenberg, G., Fixed point languages, equality languages and representation of recursively enumerable languages, J. Assoc. Comput. Mach. 27 (1980) 499–518.Google Scholar
  32. [Ge]
    Gersten,S.M., Fixed points of automorphisms of free groups, Adv. in Math. (to appear).Google Scholar
  33. [Gre]
    Greibach, S., A remark on code sets and context-free languages, IEEE Trans. Comput. C-24 (1975) 741–742.Google Scholar
  34. [Gri]
    Griffiths, T., The unsolvability of the equivalence problem for ɛ-free nondeterministic generalized machines, J. Assoc. Comput. Mach. 15 (1968) 409–413.Google Scholar
  35. [Gu]
    Guba,V.S., Personal communication (1985).Google Scholar
  36. [H]
    Harrison, M.A., Introduction to Formal Language Theory (Addison-Wesley, Reading, MA, 1979).Google Scholar
  37. [HK]
    Harju, T. and Karhumaki, J., On the defect theorem and simplifiability, Semigroup Forum 33 (1986) 199–217.Google Scholar
  38. [HKK]
    Harju, T., Karhumaki, J. and Kleijn, H.C.M., On morphic generation of regular languages, Discret. Appl. Math. 15 (1986) 55–60.CrossRefGoogle Scholar
  39. [HY]
    Hirose, S. and Yoneda, M., On the Chomsky and Stanley's homomorphic characterization of context-free languages, Theoret. Comput. Sci. 36 (1985) 109–112.CrossRefGoogle Scholar
  40. [HOY]
    Hirose, S., Okawa, S. and Yoneda, M., A homomorphic characterization of recursively enumerable languages, Theoret. Comput. Sci. 35 (1985) 261–269.CrossRefGoogle Scholar
  41. [IK]
    Ibarra,O. and Kim,C., A useful device for showing the solvability of some decision problems. in Proceedings of Eighth Annual ACM Symposium on Theory of Computing, 135–140.Google Scholar
  42. [K1]
    Karhumaki, J., Generalized Parikh mappings and homomorphisms, Inform. Control 47 (1980) 155–165.CrossRefGoogle Scholar
  43. [K2]
    Karhumaki, J., On the equivalence problem for binary DOL systems, Inform. Control 50 (1981) 276–284.CrossRefGoogle Scholar
  44. [K3]
    Karhumaki, J., The Ehrenfeucht Conjecture: A compactness claim for finitely generated free monoids, Theoret. Comput. Sci. 29 (1984) 285–308.CrossRefGoogle Scholar
  45. [K4]
    Karhumaki,J., On the regularity of equality languages, Ann. Univ. Turkuensis Ser. A I 186 (1984).Google Scholar
  46. [K5]
    Karhumaki,J., The Ehrenfeucht Conjecture for transducers, Elektron. Informationsverarb. Kybernet. (to appear).Google Scholar
  47. [K6]
    Karhumaki,J., On the equivalence of mappings on languages, in Proceedings of International Meeting of Young Computer Scientists (Hungarian Academy of Sciences, 1986).Google Scholar
  48. [KK]
    Karhumaki, J. and Kleijn, H.C.M., On the equivalence of compositions of morphisms and inverse morphisms on regular languages, RAIRO Theoret. Inform. 19 (1985) 203–211.Google Scholar
  49. [KL]
    Karhumaki, J. and Linna, M., A note on morphic characterization of languages, Discret. Appl. Math. 5 (1983) 243–246.CrossRefGoogle Scholar
  50. [KM]
    Karhumaki, J. and Maon, Y., A simple undecidable problem: Existential agreement of inverses of two morphisms on a regular language, J. Comput. System Sci. 32 (1986) 315–322.CrossRefGoogle Scholar
  51. [KS]
    Karhumaki, J. and Simon, I., A note on elementary homorphisms and the regularity of equality sets, Bull.EATCS 9 (1975) 14–24.Google Scholar
  52. [La]
    Lawrence, J., The non-existence of finite test sets for set-equivalence of finite substitutions, Bull. EATCS 28 (1986) 34–37.Google Scholar
  53. [LaL]
    Latteux, M. and Leguy, J., On the composition of morphisms and inverse morphisms, LNCS 154 (1983) 420–432.Google Scholar
  54. [LaT]
    Latteux,M. and Turakainen,P., A new normal form for compositions of morphisms and inverse morphisms, manuscript (1984).Google Scholar
  55. [Le]
    Lecerf, Y., Recursive insolubilité de l'equation generale de diagonalization de deux monomorphisms de monoides libres φx=ψx, L.R. Acad.Sci. Paris 257 (1963) 2940–2943.Google Scholar
  56. [Lo]
    Lothaire, M., Combinatorics on words (Addison-Wesley, Reading, MA, 1983).Google Scholar
  57. [dLR]
    de Luca, A. and Restivo, A., On a generalization of a conjecture of Ehrenfeucht, Bull.EATCS 30 (1986) 84–90.Google Scholar
  58. [Mak]
    Makanin, G.S., The problem of solvability of equations in a free semigroup, Mat. Sb. 103 (1977) 147–836 (English transl. in: Math. USSR Sb. 32 (1977) 129–138).Google Scholar
  59. [Mat]
    Matijasevic, J.V., Simple examples of undecidable associative calculi, Soviet Math. Dokl. 8 (1967) 555–557.Google Scholar
  60. [McN]
    McNaughton,R., A proof of the Ehrenfeucht conjecture, Informal Memorandum (1985).Google Scholar
  61. [Mao]
    Maon,Y., Decision problems concerning equivalence of transductions on languages, Ph.D. Thesis, Tel Aviv University (1985).Google Scholar
  62. [N]
    Nielsen, M., On the decidability of some equivalence problems for DOL systems, Inform. Control 25 (1974) 166–193.CrossRefGoogle Scholar
  63. [OHY]
    Okama, S., Hirose, S. and Yoneda, M., On the impossibility of the homorphic characterization of context-sensitive languages, Theoret. Comput. Sci. 44 (1986) 225–228.CrossRefGoogle Scholar
  64. [Pan]
    Pansiot, J.J., A note on Post's Correspondence Problem, Inform. Proc. Lett. 12 (1981) 233.CrossRefGoogle Scholar
  65. [Pav]
    Pavlenko,V.A., Combinatorial problem of Post with two word pairs, Proceedings of 7th Conference on Mathematical Logic, Novosibirsk, Institute of Mathematics, Siberian Branch of Academy of Sciences of USSR (1984).Google Scholar
  66. [Pe]
    Perrin, D., On the solution of Ehrenfeucht's conjecture, Bull. EATCS 27 (1985) 68–70.Google Scholar
  67. [Po]
    Post, E.L., A variant of recursively unsolvable problems, Bull. Amer. Math. Soc. 52 (1946) 264–268.Google Scholar
  68. [Pou]
    Poulsen, E.T., The Ehrenfeucht conjecture: An algebra-framework for its proof, Theoret. Comput. Sci. 44 (1986) 333–339.CrossRefGoogle Scholar
  69. [RoS]
    Rozenberg, G. and Salomaa, A., The Mathematical Theory of L Systems, (Academic Press, New York, 1980)Google Scholar
  70. [Ru1]
    Ruohonen, K., On some variants of Post's Correspondence Problem, Acta Informatica 19 (1983) 357–367.CrossRefGoogle Scholar
  71. [Ru2]
    Ruohonen, K., Reversible machines and Post's Correspondence Problem for biprefix morphisms, Elektron. Informationsverarb. Kybernet. 21 (1985) 579–596).Google Scholar
  72. [Ru3]
    Ruohonen,K., Test sets for iterated morphisms, manuscript (1984).Google Scholar
  73. [Ru4]
    Ruohonen, K., Equivalence problems for regular sets of word morphisms, in. G. Rozenberg and A. Salomaa (eds), The Book of L (Springer, Berlin, 1986).Google Scholar
  74. [Sa1]
    Salomaa, A., Equality sets for homomorphisms of free monoids, Acta Cybernetica 4 (1978) 197–139.Google Scholar
  75. [Sa2]
    Salomaa, A., DOL equivalence: The problem of iterated morphisms, Bull.EATCS 4 (1978) 5–12.Google Scholar
  76. [Sa3]
    Salomaa, A., Jewels of Formal Languages (Computer Science Press, Rockville, MD, 1981).Google Scholar
  77. [Sa4]
    Salomaa, A., The Ehrenfeucht conjecture: A proof for language theorists, Bull.EATCS 27 (1985) 71–82.Google Scholar
  78. [Sp]
    Spehner, J.-G., Personal communication (1986).Google Scholar
  79. [St1]
    Stallings, J.R., Finiteness properties of matrix representations, Ann. Math. 124 (1986) 337–346.Google Scholar
  80. [St2]
    Stallings,J.R., Graphical theory of automorphisms of free groups, manuscript.Google Scholar
  81. [T1]
    Turakainen, P., On homorphic characterization of principal semi-AFL's without using intersection with regular sets, Inform.Sci. 27 (1982) 141–149.CrossRefGoogle Scholar
  82. [T2]
    Turakainen, P., On characterization of language families in terms of inverse morphisms, Internat. J. Comput. Math. 16 (1984) 182–200.Google Scholar
  83. [T3]
    Turakainen,P., Characterizations of simple transducers and principal semiAFL's in terms of morphisms and inverse morphisms, Elektron. Informationverarb. Kybernet. (to appear).Google Scholar
  84. [T4]
    Turakainen,P., On some transducer equivalence problems for families of languages, manuscript (1987).Google Scholar
  85. [YW]
    Yokomori, T. and Wood, D., An inverse homomorphic characterization of full principal AFL, Inform. Sci. 33 (1984) 209–215.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Juhani Karhumäki
    • 1
  1. 1.Department of MathematicsUniversity of TurkuTurkuFinland

Personalised recommendations