Probability and plurality for aggregations of learning machines

  • Leonard Pitt
  • Carl H. Smith
Inductive Inference, Logic And Functional Programming
Part of the Lecture Notes in Computer Science book series (LNCS, volume 267)


Inference Criterion Recursive Function Inductive Inference Probabilistic Inference Fair Coin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D. and Smith, C. H. Inductive inference: theory and methods. Computing Surveys 15 (1983), 237–269.CrossRefGoogle Scholar
  2. 2.
    Angluin, D. and Smith, C. H. Inductive inference. In Encyclopedia of Artificial Intelligence, S. Shapiro, Ed., 1986. To appear.Google Scholar
  3. 3.
    Barzdin, J. Two theorems on the limiting synthesis of functions. In Theory of Algorithms and Programs, Barzdin, Ed., 1, Latvian State University, Riga, U.S.S.R., 1974.Google Scholar
  4. 4.
    Blum, L. and Blum, M. Toward a mathematical theory of inductive inference. Information and Control 28 (1975), 125–155.CrossRefGoogle Scholar
  5. 5.
    Case, J. and Smith, C. Comparison of identification criteria for machine inductive inference. Theoretical Computer Science 25, 2 (1983), 193–220.CrossRefGoogle Scholar
  6. 6.
    Daley, R. On the error correcting power of pluralism in BC-type inductive inference. Theoretical Computer Science 24, 1 (1983), 95–104.Google Scholar
  7. 7.
    Feldman, J. Some decidability results on grammatical inference of best programs. Information and Control 20 (1972), 244–262.CrossRefGoogle Scholar
  8. 8.
    Freivalds, R. V. Finite identification of general recursive functions by probabilistic strategies. In Fundamentals of Computation Theory, L. Budach, Ed., Akademie-Verlag, Berlin, 1979.Google Scholar
  9. 9.
    Freivalds, R. V. On the principle capabilities of probabilistic algorithms in inductive inference. Semiotika i informatika 12 (1979), 137–140. (in Russian).Google Scholar
  10. 10.
    Gold, E. M. Language identification in the limit. Information and Control 10 (1967). 447–474.CrossRefGoogle Scholar
  11. 11.
    Machtey, M. and Young, P.An Introduction to the General Theory of Algorithms. North-Holland, New York, New York, 1978.Google Scholar
  12. 12.
    Osherson, D., Stob, M., and Weinstein, S.Systems that Learn. MIT Press, Cambridge, Mass., 1986.Google Scholar
  13. 13.
    Osherson, D. N., Stob, M., and Weinstein, S. Aggregating inductive expertise. Information and Control 70 (1986), 69–95.Google Scholar
  14. 14.
    Pitt, L. A Characterization of Probabilistic Inference. In Proceedings of the 25th Annual Symposium on Foundations of Computer Science, Palm Beach, Florida, 1984.Google Scholar
  15. 15.
    Podnieks, K. M. Probabilistic synthesis of enumerated classes of functions. Soviet Math Dokl. 16 (1975), 1042–1045.Google Scholar
  16. 16.
    Podnieks, K. M. Probablistic program synthesis. In Theory Of Algorithms and Programs, Barzdin, Ed., Latvian State University, Riga, U.S.S.R., 1977. Russian.Google Scholar
  17. 17.
    Smith, C. H. The power of pluralism for automatic program synthesis. Journal of the ACM 29, 4 (1982), 1144–1165.CrossRefGoogle Scholar
  18. 18.
    Valiant, L. G. A theory of the learnable. Communications of the ACM 27, 11 (1984), 1134–1142.CrossRefGoogle Scholar
  19. 19.
    Wiehagen, R., Freivalds, R., and Kinber, E. K. On the power of probabilistic strategies in inductive inference. Theoretical Computer Science 28 (1984), 111–133.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Leonard Pitt
    • 1
  • Carl H. Smith
    • 2
  1. 1.Department of Computer ScienceUniversity of IllinoisUrbana
  2. 2.Department of Computer Science and Institute for Advanced Computer StudiesUniversity of MarylandCollege Park

Personalised recommendations