Mathematical methods for calculating invariants in Petri nets

  • Fritz Krückeberg
  • Michael Jaxy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 266)


A computationally feasible procedure for the generation of all invariants satisfying a given homogenous linear Diophantine system Cx=0 is presented, where C is the flow matrix of an associated P/T net. The computation will be considered on five levels. In order to generate all invariants the introduction of some new concepts (ℚ-generators, IN-generators) is required. Using geometrical aspects a short description of the new concepts with a new algorithm is shown. The efficiency of our methods is demonstrated by an application.


Polyhedral Cone Integer Matrix Flow Matrix Unimodular Matrix Smith Normal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alaiwan, H.; Memmi, G.: Algorithmes de recherche des solutions entiers positives d'un système linéaires homogènes. Revue Technique Thompson-CSF, 14 (1) mars 1982, pp 125–135Google Scholar
  2. [2]
    Alaiwan, H.; Toudic J.M.: Recherche de semiflots, des verrous et des trappes dans les réseaux de Pétri. T.S.I. — Technique et Sciences Informatiques, Vol. 4, n o 1, 1985, pp 103–112Google Scholar
  3. [3]
    Best, E.; Férnandez, C.: Notations and Terminology on Petri Net Theory. Arbeitspapiere der GMD 195, 1986Google Scholar
  4. [4]
    Bradley, G.H.: Algorithms for Hermite and Smith Normal Matrices and Linear Diophantine Equations. Math. Comp., Vol 25, 1971, pp 897–907Google Scholar
  5. [5]
    Brams, G.W.: Réseaux de Pétri: Theorie et Practique. Masson, Paris, 1983Google Scholar
  6. [6]
    Burger, E.: Über homogene lineare Ungleichungssysteme. Zeitschrift für angewandte Mathematik und Mechanik, Bd. 36, 1956, pp 135–139Google Scholar
  7. [7]
    Fiorot, J.Ch.; Gondran, M.: Résolution des systèmes linéaires en nombres entiers. E.D.F. — Bulletin de la Direction des Études et Recherches, Séries C — Mathématiques, Informatique No 2, 1969, pp 65–116Google Scholar
  8. [8]
    Fiorot, J.Ch.: Generation of All Integer Points for Given Sets of Linear Inequalities. Math. Programming, Vol 3, 1972, pp 276–295Google Scholar
  9. [9]
    Fischer, G.: Lineare Algebra. Rowohlt 1975Google Scholar
  10. [10]
    Frumkin, M.A.: Polynomial Time Algorithms in the Theory of Linear Diophantine Equations. In: M. Karpinski (ed): Fundamentals of Computation Theory Lecture Notes in Computer Science 56, Springer, Berlin 1977, pp 386–392Google Scholar
  11. [11]
    Gale, D.: The Theory of Linear Economics Models. McGraw Hill, New York, 1960Google Scholar
  12. [12]
    Genrich, H.J.; Lautenbach, K: System modelling with high Level Petri nets. NorthHolland Pub. Co., Theoretical Computer Science 13, 1981, pp 109–136Google Scholar
  13. [13]
    Genrich, H.J.; Lautenbach, K: S-Invariance in predicate/transition nets. Proc. 3-th European Workshop on Application and Theory of Petri nets, Varenna, Italy, 1982Google Scholar
  14. [14]
    Hermite, C.: Sur l'introduction des variables continues dans la theorie des nombres. J. Reine Angew. Math., Vol 41, 1851, pp 191–216Google Scholar
  15. [15]
    Jaxy, M.: Analyse linearer diophantischer Ungleichungs-und Gleichungssysteme im Hinblick auf Anwendungen in der Theorie der Petri-Netze. Universität Bonn, Diplomarbeit (In German), 1985Google Scholar
  16. [16]
    Jaxy, M.: GMD-Studien (In preparation), St. Augustin 1986Google Scholar
  17. [17]
    Jensen, K.: Coloured Petri Nets and the Invariants Method. Theoretical Computer Science 14, North Holland Pub. Co., 1981, pp 317–336CrossRefGoogle Scholar
  18. [18]
    Jensen, K.: How to Find Invariants for Coloured Petri Nets. Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 118, Springer-Verlag, Berlin, 1981Google Scholar
  19. [19]
    Kannan, R.; Bachem, A.: Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix. SIAM J. Comp., Vol 8, 1979, pp 499–507Google Scholar
  20. [20]
    Li, Xinzhi: Ein algebraisches Modell zur Petri-Netztheorie. Universität Bonn, Diplomarbeit (In German), 1986Google Scholar
  21. [21]
    Lautenbach, K.; Schmid H.A.: Use of Petri Nets for Proving Correctness of Concurrent Process Systems. IFIP 74, North Holland Pub. Co., 1974, pp 187–191Google Scholar
  22. [22]
    Martinez, J.; Silva, M.: A simple and fast algorithm to obtain all invariants of a generalised Petri Net. In: Girault, C., Reisig, W. (eds): Application and Theory of Petri Nets. Informatik Fachberichte Nr. 52, Springer, 1982Google Scholar
  23. [23]
    McClellen, M.T.: J. Assoc. Comput. Mach. 20 (1973), 563Google Scholar
  24. [24]
    Memmi G.: Linear Algebra in Net Theory. In Brauer W. (ed): Net Theory and Applications. Lecture Notes in Computer Science 84, Springer-Verlag, Berlin, 1980Google Scholar
  25. [25]
    Minkowski, H.: Geometrie der Zahlen. B.G. Teubner, Leipzig, 1898 and 1910Google Scholar
  26. [26]
    Motzkin, T.S.; Raiffa, H.; Thompson, G.L.; Thrall, R.M. The Double Description Method. In: Contribution to the Theory of Games, Vol. II. Princeton University Press, New Jersey, 1953Google Scholar
  27. [27]
    Newman, M.: Integral Matrices, Academic Press, New York 1972Google Scholar
  28. [28]
    Pascoletti, K.H.: Diophantische Systeme und Lösungsmethoden zur Bestimmung aller Invarianten in Petri-Netzen. Berichte der GMD Nr. 160, Bonn, 1986Google Scholar
  29. [29]
    Reisig, W.: Petrinetze — Eine Einführung. (2. Aufl.) Springer, 1986Google Scholar
  30. [30]
    Reisig, W.: Petri Nets with individual tokens. North Holland Pub. Co., Theoretical Computer Science 41, 1985, pp 185–213Google Scholar
  31. [31]
    Silva, M.; Martinez J.; Ladet, P.; Alla, H.: Generalized inverses and the calculation of symbolic invariants for coloured Petri nets. T.S.I. — Technique et Science Informatiques, Vol. 4, n o 1, 1985, pp 113–126Google Scholar
  32. [32]
    Smith, H.J.S.: On Systems of Indeterminate Equations and Congruences. Philos. Trans., Vol 151, 1861, pp 293–326Google Scholar
  33. [33]
    Toudic, J.M.: Algorithmes d'algèbre linéaire pour l'analyse structurelle des réseaux de Pétri. Revue Technique Thomson — CSF — Vol. 14 (1982), pp 137–155Google Scholar
  34. [34]
    Vautherin, J.; Memmi, G.: Computation of flows for unary predicate transition nets. In Rozenberg, G. (ed) Advances in Petri Nets, Lecture Notes in Computer Science 188, Springer 1984Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Fritz Krückeberg
    • 1
  • Michael Jaxy
    • 1
  1. 1.Institut für Methodische Grundlagen Gesellschaft für Mathematik und Datenverarbeitung mbh (GMD)St. AugustinFed. Rep. Germany

Personalised recommendations