Advertisement

Algebraic structure of flows of a regular coloured net

  • Serge Haddad
  • Claude Girault
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 266)

Abstract

This paper introduces a new flow calculation theory for a wide subclass of coloured nets : the regular nets (R.N.). Their parametrization allows to study at the same time the flows for all nets differing only by the sizes of the colour sets. The algebraic structure of the flows subspace provides a fundamental decomposition theorem leading to an algorithm computing a flow basis for a parametrized regular net. The modelling of a significant classical example is presented with the computation of a basis of flows.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1184]
    H. ALLA, P. LADET, J. MARTINEZ, M. SILVA: Modelling and validation of complex systems by coloured Petri nets. Fifth european workshop on applications and theory of Petri nets. Aarhus, Denmark (1984)Google Scholar
  2. [Ber83]
    G. BERTHELOT: Transformation et analyse de réseaux de Petri, applications aux protocoles. Thèse d'etat. Université Pierre et Marie Curie. Paris (1983)Google Scholar
  3. [Bra83]
    G.W. BRAMS: Réseaux de Petri. Théorie et pratique. Masson editeur, Paris (1983)Google Scholar
  4. [Gen81]
    H.J. GENRICH, K. LAUTENBACH: System modelling with high-level Petri nets, Theoretical computer science 13 (1981)Google Scholar
  5. [Gen82]
    H.J. GENRICH, K. LAUTENBACH: S-invariance in predicate transition nets. Third european workshop on applications and theory of Petri nets. Varenne Italy (1982)Google Scholar
  6. [Had86]
    S. HADDAD, J-M. BERNARD: Les réseaux réguliers, specification et validation par le logiciel ARP. Troisieme colloque de génie logiciel Afcet. Versailles (1986)Google Scholar
  7. [Had87]
    S. HADDAD: Thesis to appear in march 1987. Université P. et. M. Curie.Google Scholar
  8. [Hub84]
    P. HUBER, A.M. JENSEN, L.O. JEPSEN, K. JENSEN: Towards reachability trees for high-level Petri nets. Fifth european workshop on applications and theory of Petri nets. Aarhus, Denmark (1984)Google Scholar
  9. [Jen81]
    K. JENSEN: How to find invariants for coloured Petri nets. Mathematical foundations of computer science. Lectures notes in computer science 118. Springer-Verlag (1981)Google Scholar
  10. [Jen82]
    K. JENSEN: High-level Petri nets. Third european workshop on applications and theory of Petri nets. Varenne Italy (1982)Google Scholar
  11. [Kuj84]
    R. KUJANSUU, M. LINDQVIST: Efficient algorithms for computing S-invariants for predicate transition nets. Fifth european workshop on applications and theory of Petri nets. Aarhus, Denmark (1984)Google Scholar
  12. [Lau85]
    K. LAUTENBACH, A. PAGNONI: Invariance and duality in predicate transition nets and in coloured nets. Arbeitspapiere der G.M.D. 132Google Scholar
  13. [Lan77]
    S. LANG: Algebra. Addison-Wesley (seventh printing) 1977Google Scholar
  14. [Mem83]
    G. MEMMI: Méthodes d'analyse de réseaux de Petri, réseaux à files et applications aux systèmes temps réel. Thèse d'etat. Université Pierre et Marie Curie. Paris (1983)Google Scholar
  15. [Sil85]
    M. SILVA, J. MARTINEZ, P. LADET, H. ALLA: Generalized inverses and the calculation of symbolic invariants for coloured Petri nets. Technique et science informatique Vol. 4 No 1 (1985)Google Scholar
  16. [Vau84]
    J. VAUTHERIN, G. MEMMI: Computation of flows for unary predicates transitions nets. Advances in Petri net (p. 455–467). Lecture notes in computer science 188. Springer-Verlag 1984Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Serge Haddad
    • 1
  • Claude Girault
    • 1
  1. 1.Université Paris VI: Institut de programmationParis Cedex 05France

Personalised recommendations