Advertisement

A model theoretic oriented approach to analogy

  • Helmut Thiele
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 265)

Keywords

Algebraic System Analogical Reasoning Predicate Symbol Functional Symbol Semantic Information Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BURMEISTER; P.: A Model Theoretic Oriented Approach to Partial Algebras. Akademie-Verlag Berlin 1986, 319 pagesGoogle Scholar
  2. 2.
    CARBONELL, J.G.: A computational model of analogical problem solving. Proc. Seventh Int. J. Conf. Art. Int., August 24–28, 1981. University of British Columbia, Vancouver, B.C., Canada. Vol.I, pp. 147–165Google Scholar
  3. 3.
    CHAPMAN, D.: A programming testing assistent. Communications ACM 23, No.12 (1979), 689–703Google Scholar
  4. 4.
    CHEN, D.T. and N.V. FINDLER: Toward analogical reasoning in problem solving by computers. Techn. Rep. 115, State Univ. New York at Buffalo, Dept. Comp. Sc., 1976Google Scholar
  5. 5.
    EVANS, T.G.: A program for the solution of a class of geometric-analogy intelligence test questions. In.M. MINSKY: Semantic Information Processing, MIT Press 1968, 271–353Google Scholar
  6. 6.
    GAINES; B.R. and M.L.G. SHAW: Analyzing analogy In: TRAPPL, R.,. RICCIARDI, and G. PASK (eds.): Progress in Cybernetics and Systems Research. Hemiphere Pub.Co., New York, 1982, 379–386Google Scholar
  7. 7.
    GENTNER, P.: Are scientific analogies metaphors? In: Metaphor: Problems and Perspectives. D.S. MIALL (Ed.), The Harvester Press, Sussex, 106–132Google Scholar
  8. 8.
    HARAGUCHI, M. and S. ARIKAWA: An application of analogical reasoning to knowledge in formation system. Proc. of the Summer Symposium on Knowledge Understanding Systems. IIASSIS 1984, 161–164Google Scholar
  9. 9.
    HARAGUCHI, M.: Towards a mathematical theory of analogy. Bulletin of Informatics and Cybernetics 21, No 314 (1985), 29–56Google Scholar
  10. 10.
    HARAGUCHI, M.: Analogical reasoning using transformations of rules. Lecture Notes in Computer Science 221 (1986), 56–65Google Scholar
  11. 11.
    HARAGUCHI, M. and S. ARIKAWA: A formulation and a realization of analogical reasoning. Journal of JSAI 1, No 1 (1986), 132–139Google Scholar
  12. 12.
    HARAGUCHI, M. and S. ARIKAWA: Analogical union of logic programs. Proc. Logic Programming Conference '86. 1986, 103–110Google Scholar
  13. 13.
    JANTKE, K.P.: Program synthesis by analogy — a two-phased approach. Artificial Intelligence: Methodology, Systems, Applications. Proc. Int. Conf. Art.Int., Varna, Bulgaria, 17–20 September, 1984 North-Holland, 1985, 67–75Google Scholar
  14. 14.
    KLING, R.E.: A paradign for reasoning by analogy. Artificial Intelligence 2 (1971), 147–178Google Scholar
  15. 15.
    KLIX, F. and E. van der MEER: Analogical reasoning — an approach to cognitive microprocesses as well as to intelligence performance. Zeitschrift für Psychologie, Band 186 (1978), 39–47Google Scholar
  16. 16.
    LEIBNIZ, G.W.: Fragmente zur Logik Hrsg. F. Schmidt, Akademie-Verlag Berlin 1960Google Scholar
  17. 17.
    MOLL, R. and J.W. ULRICH: The synthesis of programs by analogy. Univ. Massachusetts at Amherst, Comp.Inf.Sci.Dep., Technical Report 79-03, 1973Google Scholar
  18. 18.
    MORGAN, Ch.G.: Modality, analogy, and ideal experiments according to C.S.PEIRCE. Synthese 41 (1979), 65–83Google Scholar
  19. 19.
    OPPENHEIMER, J.R.: Analogy in Science. American Psychologist 11 (1956), 127–135Google Scholar
  20. 20.
    PÖTSCHKE, D.: Toward a mathematical theory of analogical reasoning. Proc. 1982 European Conf. on Art. INT., Orsay, France, 48–53Google Scholar
  21. 21.
    POLYA; G.: Induction and analogy in mathematics. Princeton University Press, Princeton 1954Google Scholar
  22. 22.
    RUMELHART, D.E. and A.A. ABRAHAMSON: A model for analogical reasoning. Cognitive Psychology 5 (1973), 1–28Google Scholar
  23. 23.
    STERNBERG, R.J.: Intelligence, informations processing, and analogical reasoning. The componential analysis of human abilities. Hillsdale, N.J. 1977Google Scholar
  24. 24.
    SHAPIRO, E.Y.: Inductive inference of theories from facts. Research Report 192, Yale Univ., 1981Google Scholar
  25. 25.
    SHAPIRO, E.Y.: Algorithmic program debugging. Research Report 237, Yale Univ., 1982Google Scholar
  26. 26.
    THIELE, H.: Wissenschaftstheoretische Untersuchungen in algorithmischen Sprachen I. Theoríe der Graphschemata-Kalküle, Deutscher Verlag der Wissenschaften, Berlin, 1966Google Scholar
  27. 27.
    UJOMOW, A.I.: Die Hauptformen und-regeln der Analogieschlüsse. In: Studien zur Logik der Wissenschaftlichen Erkenntnis. Akademie-Verlag Berlin 1967, 307–360Google Scholar
  28. 28.
    WINSTON, P.H.: Learning and reasoning by analogy. Comm.ACM 23 (1980), No 12, 689–703Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Helmut Thiele
    • 1
  1. 1.Humboldt-Universität zu Berlin Sektion MathematikBerlinDDR

Personalised recommendations