Advertisement

On the inference of programs approximately computing the desired function

  • Carl H. Smith
  • Mahendran Velauthapillai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 265)

Keywords

Input Function Recursive Function Inductive Inference Uniform Density Inference Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D. and Smith, C. H. Inductive inference: theory and methods. Computing Surveys 15 (1983), 237–269.Google Scholar
  2. 2.
    Blum, L. and Blum, M. Toward a mathematical theory of inductive inference. Information and Control 28 (1975), 125–155.Google Scholar
  3. 3.
    Blum, M. A machine-independent theory of the complexity of recursive functions. JACM 14 (1967), 322–336.Google Scholar
  4. 4.
    Case, J. and Lynes, C. Machine inductive inference and language identification. In Automata Languages and Programming, 9th Colloquium, Lecture Notes in Computer Science, 140, Springer Verlag, Berlin, 1982.Google Scholar
  5. 5.
    Case, J. and Smith, C. Comparison of identification criteria for machine inductive inference. Theoretical Computer Science 25, 2 (1983), 193–220.Google Scholar
  6. 6.
    Chen, K. J.Tradeoffs in machine inductive inference. SUNY/Buffalo, N.Y., 1981. Ph.D. Dissertation.Google Scholar
  7. 7.
    Chen, K. J. Tradeoffs in the inductive inference of nearly minimal size programs. Information and Control 52, 1 (1982), 68–86.Google Scholar
  8. 8.
    Daley, R. On the error correcting power of pluralism in BC-type inductive inference. Theoretical Computer Science 24, 1 (1983), 95–104.Google Scholar
  9. 9.
    Daley, R. P. and Smith, C. H. On the complexity of inductive inference. Information and Control 69 (1986), 12–40.Google Scholar
  10. 10.
    Freivalds, R. V. Finite identification of general recursive functions by probabilistic strategies. In Fundamentals of Computation Theory, L. Budach, Ed., Akademie-Verlag, Berlin, 1979.Google Scholar
  11. 11.
    Freivalds, R. V. On the principle capabilities of probabilistic algorithms in inductive inference. Semiotika i informatika 12 (1979), 137–140. (in Russian).Google Scholar
  12. 12.
    Gold, E. M. Language identification in the limit. Information and Control 10 (1967), 447–474.Google Scholar
  13. 13.
    Machtey, M. and Young, P.An Introduction to the General Theory of Algorithms. North-Holland, New York, New York, 1978.Google Scholar
  14. 14.
    Osherson, D. N. and Weinstein, S. Criteria of language learning. Information and Control 52 (1982), 123–138.Google Scholar
  15. 15.
    Pitt, L. A Characterization of Probabilistic Inference. In In Proceedings of the 25th Annual Symposium on Foundations of Computer Science, Palm Beach, Florida, 1984.Google Scholar
  16. 16.
    Podnieks, K. M. Computational complexity of prediction strategies. In Theory Of Algorithms and Programs, Barzdin, Ed., Latvian State University, Riga, U.S.S.R., 1977. Russian.Google Scholar
  17. 17.
    Rogers, H. Jr.Theory of Recursive Functions and Effective Computability. McGraw Hill, New York, 1967.Google Scholar
  18. 18.
    Royer, J. S. On machine inductive inference of approximations. Information and Control (1986). to appear.Google Scholar
  19. 19.
    Smith, C. H. The power of pluralism for automatic program synthesis. Journal of the ACM 29, 4 (1982), 1144–1165.Google Scholar
  20. 20.
    Wiehagen, R. Limes-erkennung rekursiver funktionen durch spezielle strategien. Elektronische Informationsverarbeitung und Kybernetik 12 (1976), 93–99.Google Scholar
  21. 21.
    Wiehagen, R., Freivalds, R., and Kinber, E. K. On the power of probabilistic strategies in inductive inference. Theoretical Computer Science 28 (1984), 111–133.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Carl H. Smith
    • 1
  • Mahendran Velauthapillai
    • 1
  1. 1.Department of Computer ScienceThe University of MarylandCollege Park

Personalised recommendations