Towards the development of an analysis of learning algorithms

  • Robert P. Daley
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 265)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Angluin, D., Types of queries for concept learning, Technical Report TR-479, Computer Science, Yale University, 1986.Google Scholar
  2. 2).
    Angluin, D., Finding patterns common to a set of strings, JCSS 21 (1980), 42–62.Google Scholar
  3. 3).
    Angluin, D., Inductive inference of formal languages from positive data, Information and Control 45 (1980), 117–135.Google Scholar
  4. 4).
    Angluin, D., Inference of reversible languages, JACM 29 (1982), 741–765.Google Scholar
  5. 5).
    Blum, M., and Blum, L., Toward a mathematical theory of inductive ingerence, Information and Control 28 (1975), 125–155.Google Scholar
  6. 6).
    Daley, R., Smith, C., On the complexity of inductive inference, Information and Control 69 (1986), 12–40.Google Scholar
  7. 7).
    DeJong, K., A genetic-based global function optimization technique, Technical Report 80-2, Computer Science, University of Pittsburgh, 1980.Google Scholar
  8. 8).
    Feldman, J., Some decidability results on grammatical inference and complexity, Information and Control 20 (1972), 244–262.Google Scholar
  9. 9).
    Fulk, M., A study of inductive inference machines, Technical Report 85-10, Computer Science, SUNY Buffalo, 1985.Google Scholar
  10. 10).
    Gold, M., Language identification in the limit, Information and Control 10 (1967), 447–474.Google Scholar
  11. 11).
    Holland, J., Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975.Google Scholar
  12. 12).
    Kelly, K., The automated discovery of universe theories, Ph.D. Dissertation, History and Philosophy of Science, University of Pittsburgh, 1986.Google Scholar
  13. 13).
    Lindsay, R., et al, Dendral, McGraw-Hill, 1980.Google Scholar
  14. 14).
    Minicozzi, E., Some natural properties of strong identification in inductive inference, Theoretical Computer Science 2 (1976), 345–360.Google Scholar
  15. 15).
    Pitt, L., Probabilistic inductive inference, Technical Report TR-400, Computer Science, Yale University, 1985.Google Scholar
  16. 16).
    Pitt, L., and Valiant, L., Computational limitations on learning from examples, Technical Report TR-05-86, Center for Research in Computer Technology, Harvard University, 1986.Google Scholar
  17. 17).
    Popper, K., The Logic of Discovery, London, 1959.Google Scholar
  18. 18).
    Royer, J., On machine inductive inference of approximations, Technical Report 85-005, Computer Science, University of Chicago, 1985.Google Scholar
  19. 19).
    Shafer-Richter, G., Some results in the theory of effective program synthesis: learning by defective information, LNCS 215 (1986), 219–225.Google Scholar
  20. 20).
    Shafer-Richter, G., Uber eingabeabhangigkeit und komplexitat von inferenzstrategien, Ph.D. Dissertation, Mathematics, Technische Hochschule, Aachen, 1984.Google Scholar
  21. 21).
    Shapiro, E., The model inference system, Proceedings of the 7th IJCAI, 1981.Google Scholar
  22. 22).
    Shapiro, E., Algorithmic program debugging, MIT Press, 1983.Google Scholar
  23. 23).
    Shinohara, T., Some problems on inductive inference from positive data, LNCS 215 (1986), 41–58.Google Scholar
  24. 24).
    Smith, C., and Velauthpillai, M., On the inference of approximate programs, Technical Report TR-1427, Computer Science, University of Maryland, 1985.Google Scholar
  25. 25).
    Valiant, L., A theory of the learnable, CACM 27 (1984), 1134–1142.Google Scholar
  26. 26).
    Wiehagen, R., Limes-erkennung rekursiver funktionen durch spezielle strategien, EIK 12 (1976), 93–99.Google Scholar
  27. 27).
    Wiehagen, R. and Liepe, W., Charakterische eigenshaften von erkennbaren klassen rekursiver funktionen, EIK 12 (1976), 421–438.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Robert P. Daley
    • 1
  1. 1.Computer Science DepartmentUniversity of PittsburghPittsburghUSA

Personalised recommendations