Advertisement

Rydberg atoms two-photon micromaser

  • J. M. Raimond
  • L. Davidovich
  • M. Brune
  • S. Haroche
Invited Lectures Part IV: Quantum Electrodynamics in a Cavity
Part of the Lecture Notes in Physics book series (LNP, volume 282)

Abstract

We show that the continuous-wave oscillation of a two-photon maser can be achieved with Rydberg atoms In a superconducting cavity. The maser should operate with only a few photons and a few atoms at a time in the cavity. Theoretical aspects of this new quantum device are presented. We describe briefly an experimental apparatus presently under construction in our Laboratory.

Keywords

Master Equation Photon Number Rydberg Atom Quantum Device Atomic Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. P. Sorokin, N. Braslau, IBM J. Research Develop. 8, 177 (1964)Google Scholar
  2. [2]
    A. M. Prokhorov, Science, 149 (1965)Google Scholar
  3. [3]
    V. S. Letokhov, JETP Lett. 7, 221 (1968)Google Scholar
  4. [4]
    L. M. Narduccl, W. W. Eidson, P. Furcinitti, P. C. Eteson, Phys. Rev. A 16, 1665 (1977)Google Scholar
  5. [5]
    H. P. Yuen, Phys. Lett. 51A, 1 (1975)Google Scholar
  6. [8]
    H. P. Yuen, Phys. Rev. A 13, 226 (1976)Google Scholar
  7. [7]
    T. Hoshimlya, A. Yamagishl, N. Tanno, H. Inaba, Japanese J. Appl. Phys. 17, 2177 (1978)Google Scholar
  8. [8]
    N. Nayak, B. K. Mohanty, Phys. Rev. A19, 1204 (1979)Google Scholar
  9. [9]
    B. Nikolaus, D. Z. Zhang, P. E. Toschek, Phys. Rev. Lett. 47, 171 (1981)Google Scholar
  10. [10]
    P. Goy, J. M. Raimond, M. Gross, S. Haroche, Phys. Rev. Lett. 50, 1903 (1983)Google Scholar
  11. [11]
    D. Meschede, H. Walther, G. Müller, Phys. Rev. Lett. 54, 551 (1985)Google Scholar
  12. [12]
    P. Filipowicz, J. Javanalnen and P. Meystre, Phys. Rev. A34, 3077 (1986)Google Scholar
  13. [13]
    P. Filipowicz, J. Javanalnen, P. Meystre, Opt. Comm. 58, 327 (1986)Google Scholar
  14. [14]
    D. Grischkowsky, M.M.T. Loy, P. F. Liao, Phys. Rev. A12, 2514 (1975)Google Scholar
  15. [15]
    C. Fabre, S. Haroche, P. Goy, Phys. Rev. A22, 778 (1980)Google Scholar
  16. [16]
    P. Goy, J. M. Ralmond, G. Vitrant, S. Haroche, Phys. Rev. A26, 2733 (1982)Google Scholar
  17. [17]
    D. Meschede, JOSA B, to be publishedGoogle Scholar
  18. [18]
    J. Liang, M. Gross, P. Goy, S. Haroche, Phys. Rev. A 34, 2889 (1986)Google Scholar
  19. [19]
    L. Davldovlch, M. Brune, J. M. Ralmond, to be publishedGoogle Scholar
  20. [20]
    M. Sargent III, M. O. Scully, W. E. Lamb, “Laser Physics”, Addison, Reading (1974)Google Scholar
  21. [21]
    M. Brune, J. M. Raimond, S. Haroche, Phys. Rev. A 35,154 (1987)Google Scholar
  22. [22]
    H. I. Yoo, J. H. Eberly, Phys. Reports, 116, 239 (1985)Google Scholar
  23. [23]
    N. G. Van Kampen, Stochastic Processes In Physics and Chemistry, North-Holland (1981)Google Scholar
  24. [24]
    P. Fillpowicz, P. Meystre, G. Rempe, H. Walther, Optica Acta 32, 1105 (1985)Google Scholar
  25. [25]
    P. Goy, Int. J. of Infrared and mm-waves, 3, 221 (1962)Google Scholar
  26. [26]
    P. Goy, M. Brune, J. M. Ralmond, E. Chlaveri, J. Tuckmantel, to be publishedGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • J. M. Raimond
    • 1
  • L. Davidovich
    • 1
  • M. Brune
    • 1
  • S. Haroche
    • 1
  1. 1.Laboratoire de Spectroscopie Hertzienne de I'ENS (unité associée au CNRS U. A. 18)Paris Cedex 05France

Personalised recommendations