Quantum noise reduction via twin photon beam generation

  • E. Giacobino
  • C. Fabre
  • A. Heidmann
  • R. Horowicz
  • S. Reynaud
Invited Lectures Part II: Squeezed Quantum States
Part of the Lecture Notes in Physics book series (LNP, volume 282)


Such highly correlated intense beams could have applications in very various demains : first, it may enhance the sensitivity of absorption measurements (15) : if one inserts an absorption cell on one arm and scans thefrequency around an absorption frequency, the signal-to-noise ratio of the absorption dip recorded on the signal I1- I2 is no longer shot noise limited. Second, in a way analogous to ref. (16), one can monitor the I1 intensity only and use this signal to react on I2 (or on the pump intensity). This would provide an intensity squeezed laser like beam, approximation of a Fock state IN>, which has so far never been obtained in the laboratory.


Optical Parametric Oscillator Signal Field Pump Field Intense Beam Vacuum Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R.J. Glauber, Phys. Rev. 130, 2529 (1963): 131, 2766 (1963).Google Scholar
  2. (2).
    D.F. Walls, Nature 306, 141 (1983).Google Scholar
  3. (3).
    R. Slusher, L. Hollberg, B. Yurke, J. Mertz, J. Valley, Phys. Rev. Lett. 55, 2409 (1985)Google Scholar
  4. (3)a.
    R. Shelby, M. Levenson, S. Perlmutter, R. De Voe, D. Walls, Phys. Rev. Lett. 57, 691 (1986).Google Scholar
  5. (3)b.
    Ling-An Wu, H.J. Kimble, J.L. Hall, Huifa Wu, Phys. Rev. Lett. 57 2520 (1986).Google Scholar
  6. (4).
    D. Burnham, D. Weinberg, Phys. Rev. Lett. 25, 84 (1970).Google Scholar
  7. (5).
    S. Friberg, C. Hong, L. Mandel, Phys. Rev. Lett. 54, 2011 (1985).Google Scholar
  8. (6).
    B. Mollow, R. Glauber, Phys. Rev. 160, 1097 (1967).Google Scholar
  9. (6)a.
    B. Mollow, Phys. Rev. A 8, 2684 (1973).Google Scholar
  10. (6)b.
    C. Hong, L. Mandel, Phys. Rev. A 31, 2409 (1985).Google Scholar
  11. (7).
    Ling-An Wu, H.J. Kimble, J.L. Hall, Huifa Wu, Phys. Rev. Lett. 57, 2520 (1986).Google Scholar
  12. (8).
    E. Jakeman, J. Walker, Opt. Com. 55, 219 (1985).Google Scholar
  13. (8)a.
    R. Brown, E. Jakeman, E. Pike, J. Rarity, P. Tapster, Europhys. Lett. 2, 279 (1986).Google Scholar
  14. (9).
    J. Giordmaine, R. Miller, Phys. Rev. Lett. 14, 973 (1965).Google Scholar
  15. (9)a.
    S. Harris, Proc. IEEE 57, 2096 (1969).Google Scholar
  16. (9)b.
    R. Smith: Optical Parametric Oscillators in “Laser Handbook I”, T. Arecchi, E. Schultz-Dubois editors, North Holland (1973).Google Scholar
  17. (10).
    S. Reynaud, C. Fabre, E. Giacobino, J.O.S.A. To be published.Google Scholar
  18. (11).
    B. Yurke, Phys. Rev. A 29, 408 (1984); Phys. Rev. A 32, 300 (1985).Google Scholar
  19. (11)a.
    M. Collett, D. Walls, Phys. Rev. A 32, 2887 (1985).Google Scholar
  20. (12).
    M. Reid, D. Walls, Phys. Rev. A 31, 1622 (1985).Google Scholar
  21. (13).
    S. Reynaud, preprint, 1987Google Scholar
  22. (14).
    C.M. Savage and D.F. Walls, J.O.S.A. To be published.Google Scholar
  23. (15).
    N.C. Wong, J. Hall, J. Opt. Soc. Am. B 2, 1527 (1985).Google Scholar
  24. (15)a.
    M. Gehrtz, G. Bjorklund, E. Whittaker, J. Opt. Soc. Am. B 2, 1510 (1985).Google Scholar
  25. (16).
    Y. Yamamoto, N. Imoto, S. Machida, Phys. Rev. A 33, 3243 (1986).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • E. Giacobino
    • 1
  • C. Fabre
    • 1
  • A. Heidmann
    • 1
  • R. Horowicz
    • 1
  • S. Reynaud
    • 1
  1. 1.Laboratoire de Spectroscopie Hertzienne de l'ENS (Laboratoire associé au CNRS)Université Pierre et Marie CurieParis Cedex 05

Personalised recommendations