Parallel algorithms and the classification of problems

  • A. Bertoni
  • M. Goldwurm
  • G. Mauri
  • N. Sabadini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 253)


Boolean Function Greedy Algorithm Parallel Algorithm Turing Machine Boolean Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ACG.
    F. Arcelli, P. Campana, M. Goldwurm, Area e lunghezza media dei lati nei layouts di grafi generici, Tech. Rep., Istituto di Cibernetica, Università di Milano, 1985 (in Italian).Google Scholar
  2. AHU.
    A.V. Aho, J.E. Hopcroft, J.D. Ullman, The design and analysis of computer algorithms, Addison-Wesley, Reading, Ma, 1974.Google Scholar
  3. AM.
    R. Anderson, E. Mayr, Parallelism and greedy algorithms, Rep. STAN-CS-84-1003, Stanford University, 1984.Google Scholar
  4. AM.
    B A. Borodin, On relating time and space to size and depth, SIAM J. Comput. 6, 733–744, 1977.Google Scholar
  5. /BBMS/.
    A. Bertoni, M.C. Bollina, G. Mauri, N. Sabadini, On characterizing classes of efficiently parallelizable problems, in "VLSI: Algorithms and architectures" (P. Bertolazzi and F. Luccio ed's), 13–26, North-Holland, Amsterdam, 1985.Google Scholar
  6. /BMS/.
    A. Bertoni, G. Mauri, N. Sabadini, Non deterministic machines and their generalizations, Proc. WOPPLOT 83 (J. Becker and I. Eisele eds), Lect. Not. in Physics, pp. 86–97, Springer, Berlin, 1983.Google Scholar
  7. Be.
    S.J. Berkowitz, On computing the determinant in small parallel time using a small number of processors, Preprint, University of Toronto, 1982.Google Scholar
  8. /Br/.
    G. Brebner, Relating routing graphs and two dimensional grids, in "VLSI: Algorithms and architectures" (P. Bertolazzi and F. Luccio ed's), North-Holland, Amsterdam, 1985.Google Scholar
  9. C1.
    S.A. Cook, An observation on time-storage tradeoff, JCSS 9, 308–316, 1974.Google Scholar
  10. C2.
    S.A. Cook, Deterministic CFL's are accepted simultaneously in polynomial time and log squared space, Proc. 11th ACM STOC, 338–345, 1979.Google Scholar
  11. C3.
    S.A. Cook, Towards a complexity theory of synchronous parallel computation, L'enseignement Mathematique XXVII, 99–124, 1981.Google Scholar
  12. C.
    S.A. Cook, A taxonomy of problems with fast parallel algorithms, Information and Control, 64, 2–22, 1985.Google Scholar
  13. CKS.
    A. Chandra, D. Kozen, L. Stockmeyer, Alternation, J. ACM 28, 114–133, 1981.Google Scholar
  14. D.
    P.W. Dymond, Simultaneous resource bounds and parallel computations, Technical Report TR145/80, Dept. of Comp. Sci., University of Toronto, 1980.Google Scholar
  15. DC.
    P.W. Dymond, S.A. Cook, Hardware complexity and parallel computation, Proc. 21th IEEE FOCS, 360–372, 1980.Google Scholar
  16. DKM.
    C. Dwork, P. Kanellakis, J. Mitchell, On the sequential nature of unification, J. of Logic Programming 1, 35–50, 1984.Google Scholar
  17. DLR.
    D. Dobkin, R. Lipton, S. Reiss, Linear programming is log-space hard for P, Info. Proc. Lett. 8, 2, 96–97, 1979.Google Scholar
  18. FW.
    S. Fortune, J. Wyllie, Parallelism in random access machines, Proc. 10th ACM STOC, 114–118, 1978.Google Scholar
  19. G1.
    L.M. Goldschlager, The monotone and planar circuit value problems are log-space complete for P, SIGACT News 9, 2, 25–29, 1977.Google Scholar
  20. G2.
    L.M. Goldschlager, A Universal Interconnection Pattern for Parallel Computers, J. ACM 29, 3, pp.1073–1086, 1982.Google Scholar
  21. GJ.
    M. Garey, D. Johnson, Computers and intractability — A guide to the theory of NP completeness, Freeman and Co., San Francisco, 1979.Google Scholar
  22. GSS.
    L.M. Goldschlager, R. Shaw, J. Staples, The maximum flow problem is log-space complete for P, Theor. Comp. Sci. 21, 105–111, 1982.Google Scholar
  23. KW.
    R. Karp, A. Wigderson, A fast parallel algorithm for the maximal independent set problem, Proc. 16th ACM STOC, 266–272, 1984.Google Scholar
  24. JL.
    N.D. Jones, W.T. Laaser, Complete problems for deterministic polynomial time, Theor. Comp. Sci. 3, 105–117, 1977.Google Scholar
  25. L.
    R.E. Ladner, The circuit value problem is log-space complete for P, SIGACT News 7, No. 1, 18–20, 1975.CrossRefGoogle Scholar
  26. P.
    N. Pippenger, On simultaneous resource bounds (preliminary version), Proc. 20th IEEE FOCS, 307–311, 1979.Google Scholar
  27. PW.
    M.S. Paterson, M.N. Wegman, Linear unification, JCSS 16, 158–167, 1978.Google Scholar
  28. R.
    W.L. Ruzzo, On uniform circuit complexity, JCSS 22, 385–383, 1981.Google Scholar
  29. RT.
    W.L. Ruzzo, M. Tompa, Unpublished result, quoted in C3.Google Scholar
  30. V.
    L. Valiant, Parallel computation, Proc. 7th IBM Symp. on Mathematical Foundations of Computer Science, 1982.Google Scholar
  31. VS.
    J. Vitter, R. Simons, New classes of parallel complexity: a study of unification and other complete problems in P, Tech. Rep. CS8406, Dept. Comp.Sci., Brown University, 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • A. Bertoni
    • 1
  • M. Goldwurm
    • 1
  • G. Mauri
    • 1
  • N. Sabadini
    • 1
  1. 1.Dipartimento di Scienze dell'informazioneUniversità di MilanoItaly

Personalised recommendations