Pattern storage and associative memory in quasi-neural networks

  • M. R. B. Forshaw
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 253)


Storage Capacity Turing Machine Active Node Associative Memory Regular Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.C. Longuet-Higgins, D.J. Willshaw & O.P. Buneman, "Theories of associative recall", Quart. Rev. Biophys. 3, 223–244,1970.Google Scholar
  2. 2.
    J.S. Griffith, Mathematical neurobiology, Academic Press, London, 1971.Google Scholar
  3. 3.
    K. Nakano, "Associatron — a model of associative memory", IEEE Trans. Syst. Man Cybernet. SMC-2, 380–388,1972.Google Scholar
  4. 4.
    W.A. Little & G.L. Shaw, "Analytic study of the memory storage capacity of a neural network", Math. Biosci. 39, 281–290,1978.Google Scholar
  5. 5.
    G. Palm, "On associative memory", Biol. Cybernet. 39,125–127,1981.Google Scholar
  6. 6.
    G. Palm, "On the storage capacity of an associative memory with randomly distributed storage elements", Biol. Cybernet. 39,125–127,1981.Google Scholar
  7. 7.
    G.E. Hinton & J.A. Anderson, Parallel models of associative memory, Erlbaum, Hillsdale NJ,USA, 1981.Google Scholar
  8. 8.
    A. Lansner & O. Ekeberg, "Reliability and speed of recall in an associative network", IEEE Trans. PAMI-7, 490–498, 1985.Google Scholar
  9. 9.
    J.J. Hopfield, "Neural networks and physical systems with emergent computational abilities", Proc. Nat. Acad. Sci. USA 79, 2554–2558,1982.PubMedGoogle Scholar
  10. 10.
    R.J. Wilson & L.W. Beineke (eds), Applications of graph theory, Academic Press, London 1979.Google Scholar
  11. 11.
    R.O. Grondin, W. Porod, C.M. Loeffler & D.K. Ferry, "Synchronous and asynchronous systems of threshold elements", Biol. Cybernet. 49,1–7,1983.Google Scholar
  12. 12.
    M.Y. Choi & B.A. Huberman, "Nature of time in Monte Carlo processes", Phys. Rev. B29,2796–2798,1984.Google Scholar
  13. 13.
    W.S. McCullough & W. Pitts, "A logical calculus of the ideas immanent in nervous activity", Bull. Math. Biosci. 5,115–133,1943.Google Scholar
  14. 14.
    M.L. Minsky, Computation: finite and infinite machines, Prentice-Hall, Englewood Cliffs,NJ,USA, 1967.Google Scholar
  15. 15.
    D. Deutsch, "Quantum theory, the Church-Turing principle and the universal quantum computer", Proc. R. Soc. Lond. A400,97–117,1985.Google Scholar
  16. 16.
    D.H. Ackley, G.E. Hinton & T.J. Sejnowski, "A learning algorithm for Boltzmann machines", Cognitive Sci. 9,147–169,1985.Google Scholar
  17. 17.
    N.J. Nilsson, Learning machines, McGraw Hill, NY,USA, 1965.Google Scholar
  18. 18.
    H. Haken, Synergetics, Springer-Verlag, Berlin,1983.Google Scholar
  19. 19.
    M.R.B. Forshaw, "The cooperative stereo algorithm: an empirical approach", Biol. Cybernet. 33,143–149,1979.Google Scholar
  20. 20.
    J. Kittler & J. Illingworth, "Relaxation labelling algorithms — a review", Image & Vis. Comput. 3,206–216,1985.Google Scholar
  21. 21.
    S. Kirkpatrick & D. sherrington, "Infinite-ranged models of spin-glasses", Phys. Rev. B17, 4384–4403, 1978.Google Scholar
  22. 22.
    M.R.B.Forshaw, "Pattern storage and associative memory in quasi-neural networks", Report No. 86/5, Image Processing Group, Dept. of Phys. & Astron., Univ. Coll. London, Gower Street, London WC1, UK.Google Scholar
  23. 23.
    J.J. Hopfield, "Neural networks with graded response have collective computational properties like those of two-state neurons", Proc. Natl. Acad. Sci. USA 81, 3088–3092, 1984.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • M. R. B. Forshaw
    • 1
  1. 1.Image Processing Group Dept. of Physics & AstronomyUniversity College LondonLondonUK

Personalised recommendations