Chapter 7 Performance modeling of the DBMAC architecture

  • S. Salza
  • M. Terranova
  • P. Velardi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 257)


In this paper we present a performance analysis study of the database machine DBMAC. A two level hierarchical model is used to represent both the details of the internal structure and the interactions between the system and the environment. This approach allowed to characterize the global performance of the database machine and to compare different design alternatives at the physical architecture level.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BAS75]
    F. Baskett, K. M. Chandy, R. R. Muntz and F. Palacios-Gomez: Open closed and Mixed Networks of Queues with Different Classes of Customers, JACM 22, 2 (Apr.1975).Google Scholar
  2. [CES82]
    F. Cesarini, G. Soda: An Analysis of the Processes Activated by the Relational Primitives in DBMAC, DATANET/DBMAC Tech. Rep. 10, 1982.Google Scholar
  3. [CDS82]
    F. Cesarini, D. Deluca, G. Soda: An Assessment of DBMAC Query Processing, Proc. of II IWDM, San Diego 1982.Google Scholar
  4. [CHS80]
    K. M. Chandy and C. H. Sauer: Computational Algorithms for Product Form Queueing Networks, CACM 23, 10 (Oct.1980).Google Scholar
  5. [MIS82]
    M. Missikoff: A Domain Based Internal Schema for Relational Database Machines, 1982 ACM/SIGMOD Int. Conf. on Data Management System.Google Scholar
  6. [MIT82]
    M. Missikoff, M. Terranova: The Architecture of DBMAC, a Relational Database Computer, Proc. of II IWDM, San Diego 1982.Google Scholar
  7. [RES78]
    M. Reiser, C. H. Sauer: Queueing Networks Models: Methods of Solution and their Program Implementation, in K.M.Chandy and R.T.Yen eds., “Current Trends in Programming Methodology”, vol.III, Prentice-Hall 1978.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • S. Salza
  • M. Terranova
  • P. Velardi

There are no affiliations available

Personalised recommendations