Advertisement

The description of the quadrupole collective motion of a proton-neutron interacting system within a generalized coherent state model

  • A. A. Rădută
C. Giant Resonance States
Part of the Lecture Notes in Physics book series (LNP, volume 279)

Abstract

The coherent state model is extended to the description of a composite system of protons and neutrons. Six rotational bands are simultaneously treated by means of an effective quadrupole boson Hamiltonian. Among them there are two (p,n) asymmetric bands with Kπ = 1+. Special attention is paid to the Ml state 1+. All its properties are quantitatively described for 156,158,160Gd although the results are free of any adjustable parameter.

Keywords

Gamma Band Boson Representation Ground Band Intrinsic Frame Gyromagnetic Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.Bohle, A.Richter, W.Steffen, A.E.L. Dieperink, N.Lo Iudice, F.Palumbo and O.Scholten, Phys.Lett. 137E (1983) 27.Google Scholar
  2. 2.
    U.E.P.Berg, C. Blässing, J.Drexler, R.D.Heil, U.Kneissel, W.Naatz, R.Ratzek, S.Schennach, R.Stock, T.Weber, H.Wickert, Phys.Lett. 149B (1984) 59.Google Scholar
  3. 3.
    D.Bohle, G. Küchler, A.Richter and W.Steffen, Phys. Lett. 148B (1984) 260.Google Scholar
  4. 4.
    A.Faessler, Nucl.Phys. 85 (1966) 653.CrossRefGoogle Scholar
  5. 5.
    A.Bohr, Mat.Fys.Medd.Dan.Vid.Slesk 26, No. 14 (1952) A.Bohr, B.R.Mottelson, ibid 27, No. 16 (1953).Google Scholar
  6. 6.
    V.Maruhn-Rezwani, W.Greiner and J.A.Maruhn, Phys.Lett. 57B (1975) 109Google Scholar
  7. 7.
    A.Faessler, Z.Bochnacki and R.Nojarov, preprint Tübingen, 1985.Google Scholar
  8. 8.
    N. Lo Iudice and F.Palumbo, Phys.Rev.Lett. 74 (1978) 1046, Nucl.Phys. A326 (1979) 193.Google Scholar
  9. 8.a
    G. De Franceschi, F.Palumbo, N. Lo Iudice, Phys.Rev. C29 (1984)1496Google Scholar
  10. 9.
    M.Goldhaber and E.Teller, Phys.Rev. 74 (1948) 1046.CrossRefGoogle Scholar
  11. 10.
    F.Iachello, Nucl. Phys. A358 (1981) 89c, Phys. Rev. Lett. 53 (1984) 1427.Google Scholar
  12. 10.a
    A.E.L.Dieperink, Progr.Part.Nucl.Phys. 9 (1983) 121.CrossRefGoogle Scholar
  13. 11.
    T.Suzuki and D.J. Rowe, Nucl. Phys. A289 (1977) 461.Google Scholar
  14. 12.
    E.Lipparini and S.Stringari, Phys.Lett. 130B (1983) 139.Google Scholar
  15. 13.
    D.R.Bes and R.A.Broglia, Phys.Lett. 137B (1984) 141.Google Scholar
  16. 14.
    H.Kurasawa, T.Suzuki, Phys.Lett. 144B (1984) 151.Google Scholar
  17. 15.
    R.R.Hilton, Z.Phys. A316 (1984) 121.Google Scholar
  18. 16.
    R.K.Sheline, Rev.Mod.Phys. 32 (1960)1.CrossRefGoogle Scholar
  19. 17.
    M. Sakai, Nucl.Phys. A104 (1967) 301.Google Scholar
  20. 18.
    M.Finger et al., Nucl.Phys. A188 (1972) 369.Google Scholar
  21. 19.
    A.A.Raduta, V.Ceausescu, A.Gheorghe and R.M.Dreizler, Preprint FT-190 (1980)IPNE-Bucharest; Phys.Lett. 99B (1981) 444; Nucl.Phys. A381 (1982) 253.Google Scholar
  22. 20.
    A.A.Raduta, S.Stoica and N.Sandulescu, Rev. Roum. Phys. 29, 1 (1984)56.Google Scholar
  23. 21.
    A.A.Raduta and C. Sabac, Ann.Phys. 148 (1983) 1.CrossRefGoogle Scholar
  24. 22.
    A.A.Raduta and N.Sandulescu, Preprint FT-269 (1985)IPNE-Bucharest; Revue Roum.Phys. 31, 8 (1986) 765.Google Scholar
  25. 23.
    A.A.Raduta, Rev.Roum.Phys. 28, 3 (1983) 195.Google Scholar
  26. 24.
    A.A.Raduta, A.Faessler, Th. Köppel and C.Lima, Z. Phys. A312 (1983)23.Google Scholar
  27. 25.
    A.A.Raduta, C.Lima, A.Faessler, Phys.Lett. 121B (1983) 1.Google Scholar
  28. 26.
    A.A.Raduta, C.Lima, A.Faessler, Z. Phys. A313 (1983) 69.Google Scholar
  29. 27.
    A.A.Raduta, S.Stoica, to be published.Google Scholar
  30. 28.
    A.A.Raduta, V.Ceausescu, A.Faessler, Rev.Roum.Phys. 31, 7 (1986) 649.Google Scholar
  31. 29.
    A.A.Raduta, A.Faessler, V.Ceausescu, to appear in Phys.Rev. C.Google Scholar
  32. 30.
    M.E. Rose, Elementary Theory of Angular Momentum, John Wiley & Sons, New York, 1957.Google Scholar
  33. 31.
    A.A.Raduta, I.I.Ursu, D.S.Delion, Rev.Roum.Phys. 31, 8 (1986)799.Google Scholar
  34. 32.
    T. de Forest, Jr. and J.D.Walecka, Adv.Phys. 15 (1966) 1.Google Scholar
  35. 33.
    P.O.Lipas, J.Kumpulainen, E.Hammaren, T.Honkaranta, M.Finger, T.I.Krakova, I.Prochazka and J.Ferenzei, Phys.Scr. 27 (1983) 8.Google Scholar
  36. 34.
    A.Bäcklin et al., Nucl.Phys. A380 (1982) 189.Google Scholar
  37. 35.
    S.Pittel, J.Dukelsky, R.P.J.Perazzo and H.M.Sofia, Phys.Lett. 144B (1984) 145.Google Scholar
  38. 36.
    I.Novoselsky, communication of Dubrovnik Conference, June, 1986.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • A. A. Rădută
    • 1
  1. 1.Central Institute of PhysicsBucharestRomania

Personalised recommendations