Excitation and decay of electric giant resonances — especially the isoscalar giant monopole resonance

  • A. van der Woude
C. Giant Resonance States
Part of the Lecture Notes in Physics book series (LNP, volume 279)


In this paper recent progress in the excitation and decay of electric giant resonances, especially the isoscalar giant monopole resonance will be discussed. The compressibility of nuclear matter Kn.m. will be determined from the newest experimental data on the GMR over the mass range 24 < A < 208 using a semiphenomenological expression for the nuclear compressibility KA in terms of a volume, surface, asymmetry and Coulomb contribution. The resulting value, Kn.m. ∼ 260 Mev is in good agreement with nuclear matter calculations. Recently new data for the neutron decay of the GMR in 208Pb and 124Sn have been obtained. These data turn out to be compatible with a nearly 100% statistical decay mode if in the statistical model calculations a realistic level scheme for the residual nuclei is used. A similar analysis applied to existing data on the GDR in 208Pb shows that also for this resonance the data are compatible with a nearly 100% statistical decay mode.


Nuclear Matter Strength Distribution Statistical Decay Residual Nucleus Giant Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    A. van der Woude, Progr. in Part. and Nucl. Phys. (ed. A. Faessler) to be published 1986.Google Scholar
  2. 2).
    J. Speth and A. van der Woude, Rep. Progr. Phys. 44 (1981) 719.CrossRefGoogle Scholar
  3. 3).
    K. Goeke and J. Speth, Ann. Rev. Nucl. Part. Sci 32 (1982) 65.CrossRefGoogle Scholar
  4. 4).
    J.D. Bowman et al., Phys. Rev. Lett. 50 (1983) 1195; Journ. de Physique C4 (1984) 351.CrossRefGoogle Scholar
  5. 5).
    A. Erell et al., Phys. Rev. Lett. 52 (1984) 2134; preprint 1985.CrossRefGoogle Scholar
  6. 6).
    T. Yamagata et al., Phys. Rev. C23 (1981) 937Google Scholar
  7. 7).
    H.P. Morsch, Journ. de Physique 45 (1984) C4–185.Google Scholar
  8. 8).
    D.K. McDaniels et al., Phys. Rev. C3 (1986) 1943.Google Scholar
  9. 9).
    G.S. Adams et al., Phys. Rev. C33 (1986) 2054.Google Scholar
  10. 10).
    B. Bonin et al., Nucl. Phys. A430 (1984) 349.Google Scholar
  11. 11).
    D.H. Youngbloud et al., Phys. Rev. C23 (1981) 1997.Google Scholar
  12. 11.a
    C.M. Rozsa et al., Phys. Rev. C21 (1980) 1252. 12) S. Brandenburg et al., to be published and Thesis, Groningen 1985.Google Scholar
  13. 13).
    M. Buenerd, Journ. de Physique 45 (1984) C4–115.Google Scholar
  14. 14).
    H.J. Lu et al., Phys. Rev. C33 (1986) 1116.Google Scholar
  15. 15).
    Y.-W. Lui, Phys. Rev. C31 (1985) 1643.Google Scholar
  16. 16).
    J. Treiner et al., Nucl. Phys. A371 (1981) 253.Google Scholar
  17. 17).
    J.P. Blaizot and B. Grammaticos, Nucl. Phys. A355 (1981) 115.Google Scholar
  18. 18).
    M.M. Sharma et al., private communication, KVI, 1986.Google Scholar
  19. 19).
    B. Ter Haar, Thesis, Groningen 1986.Google Scholar
  20. 20).
    Th. Kihm et al., Phys. Rev. Lett. 56 (1986) 2789.CrossRefPubMedGoogle Scholar
  21. 21).
    G. Bolme, Ph.D. Thesis, Illinois 1983.Google Scholar
  22. 22).
    S. Brandenburg et al., Phys. Rev. Lett. 49 (1982) 1687.CrossRefGoogle Scholar
  23. 22.a
    R. de Leo et al. Nucl. Phys. A441 (1985) 591.Google Scholar
  24. 23).
    F. Zwarts et al., Nucl. Phys. A439 (1985) 117.Google Scholar
  25. 24).
    J. Speth et al., Phys. Rev. C31 (1985) 2310.Google Scholar
  26. 25).
    J. Wambach and B. Schwesinger, Journ. de Physique 45 C4-281Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • A. van der Woude
    • 1
  1. 1.Kernfysisch Versneller InstituutAA GroningenThe Netherlands

Personalised recommendations