Classical limit and quantization of hamiltonian systems

  • V. Ceausescu
  • A. Gheorghe
A. Semiclassical Features of Nuclear Motion
Part of the Lecture Notes in Physics book series (LNP, volume 279)


Hamiltonian System Coherent State Symplectic Form Symplectic Manifold Geometric Quantization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    S.Iida, M.Yamamura: Utility of the Elliptic Function for Classical SU(2) — Models of Nuclear Collective Motions. Progr.Theor.Phys. 70, 783 (1983).Google Scholar
  2. 2).
    H.J.Lipkin, N.Meshkov, A.J.Glick: Validity of Many-Body Approximation Methods for a Solvable Model.,Nucl.Phys.62, 188 (1965).CrossRefGoogle Scholar
  3. 3).
    A.Bohr, B.R.Mottelson: Solutions for Particle-Rotor and Cranking Models for Single j Configuration.Physica Scripta 22, 461 (1980).Google Scholar
  4. 4).
    A.Bohr, B.R.Mottelson: Nuclear Structure, Vol.II, New York: Benjamin, 1976.Google Scholar
  5. 5).
    P.Kramer, M.Saraceno:Geometry of the Time-dependent Variational Principle in Quantum Mechanics. Lecture Notes in Physics 140,Berlin: Springer Verlag, 1981.Google Scholar
  6. 6).
    Nuclear Collective Dynamics, Lectures of the 1982 International Summer School of Nuclear Physics, Poiana Brasov, Romania, Edited by D.Bucurescu, V.Ceausescu, N.V.Zamfir, Singapore: World Sci. 1983.Google Scholar
  7. 7).
    R.Abraham, J.Marsden: Foundations of Mechanics, 2nd ed. London: Benjamin/Cummings, 1978.Google Scholar
  8. 8).
    V.Guillemin,S.Sternberg: Symplectic techniques in physics. Cambridge: Cambridge University Press, 1984.Google Scholar
  9. 9).
    A.A.Kirillov: Elements of the Theory of Representations. New-York: Springer Verlag, 1976.Google Scholar
  10. 10).
    B.Kostant: Quantization and Unitary Representations. Lecture Notes in Mathematics, 170, 87, Berlin: Springer Verlag, 1970.Google Scholar
  11. 11).
    J.-M.Souriau: Structure des Systèmes Dynamiques. Paris: Dunod 1970.Google Scholar
  12. 12).
    V.Guillemin, S.Sternberg: The Moment Map and Collective Motion. AnnPhys. 127, 220 (1980).Google Scholar
  13. 13).
    S.Kobayashi,K.Nomizu:Foundations of Differential Geometry, Vol.I and II. New York: Interscience Publishers, 1969.Google Scholar
  14. 14).
    H.C.Wang: Closed manifolds with homogeneous complex structure. Amer.J.Math. 76, 1, 1954.Google Scholar
  15. 15).
    A.Borel: Kählerian coset spaces of semi-simple Lie groups. Proc.Nat. Acad.Sci. USA, 40, 1147, 1954.Google Scholar
  16. 16).
    J.A.Wolf: The action of a real semisimple Lie group on a complex flag manifold, I: Orbit structure and holomorphic arc components. Bull. Amer.Math.Soc. 75, 1121, 1969.Google Scholar
  17. 17).
    V.Ceausescu, A.Gheorghe: Quantization of algebraiccollectiveHamiltonians with semisimple symmetry groups, — to be published.Google Scholar
  18. 18).
    P.R.Chernoff, J.E.Marsden: Properties of Infinite Dimensional Hamil' tonian Systems. Lecture Notes in Mathematics 452, Berlin:Springer Verlag, 1974.Google Scholar
  19. 19).
    R.Cirelli, P. Lanzavecchia: Hamiltonian Vector Fields in Quantum Mechanics, Nuovo Cimento B, 79 271 (1984).Google Scholar
  20. 20).
    E.Wigner: Group theory and its application to the quantum mechanics of atomic spectra, New York: Academic 1959.Google Scholar
  21. 21).
    V.Bargmann: On unitary ray representations of continuous groups. Ann. of Math. 59, 1 (1964).Google Scholar
  22. 22).
    F. A. Berezin: Quantization, Izv. Akad. Nauk SSSR, Ser. Mat. 34,1116 (1974).Google Scholar
  23. 23).
    A.Borel, A.Weil: Representations lineares et espaces homogenes kähleriens des grupes de Lie compacts. Sem.Bourbaki, exp.100, by J.P. Serre (1954).Google Scholar
  24. 24).
    A.M. Perelomov Coherent States for Arbitrary Lie groups.Commun.Math. Phys. 26, 222 (1972).CrossRefGoogle Scholar
  25. 25).
    J.R. Klauder, B.S.Skagerstam: Coherent States — Applications in Physics and Mathematical Physics. Singapore: World Sci.Publ. 1985.Google Scholar
  26. 26).
    V.I.Arnold: Mathematical Methods of Classical Mechanics. New York: Springer Verlag, 1978.Google Scholar
  27. 27).
    V.Ceausescu, A.Gheorghe, A.A.Raduta, Hamiltonian Dynamics for Collective SU(2) Models, — to be published.Google Scholar
  28. 28).
    A.Erdélyi: Higher Transcedental Functions, vol.3, New York: McGraw Hill, 1955.Google Scholar
  29. 29).
    J.Moser: Stable and random motions in dynamical systems. Ann.Math. Studies 77. Princeton: Princeton Univ.Press 1973.Google Scholar
  30. 30).
    “Stochastic” Behaviour in Classical and Quantum Hamiltonian Systems, eds. G.Casati, J.Ford. Lecture Notes in Physics 93, Berlin: Springer Verlag, 1979.Google Scholar
  31. 31).
    N.Woodhouse: Geometric Quantization, Oxford: Oxford Univ.Press, 1980.Google Scholar
  32. 32).
    V.Guillemin, S.Sternberg: Geometric Asymptotics. Mathematical Surveys, No.14, Amer.Math.Soc., Providence, R.I., 1977.Google Scholar
  33. 33).
    D.J.Simms, N.Woodhouse: Lectures on Geometric Quantization,Lecture Notes in Physics 53, New York:Springer Verlag,1976.Google Scholar
  34. 34).
    J.A.Tirao and J.A.Wolf: Homogeneous holomorphic vector bundles, Indiana Univ.Math.J. 20,15 (1970).CrossRefGoogle Scholar
  35. 35).
    L.Auslander, B.Kostant: Polarization and Unitary Representations of Solvable Lie Groups. Invent.math. 14, 255 (1971).CrossRefGoogle Scholar
  36. 36).
    J.H.Rawnsley: Coherent States and Kähler Manifolds, Quart.J.Math. 28, 403 (1977).Google Scholar
  37. 37).
    M.F.Atiyah, W.Schmid: A Geomatric Construction of the Discrete Series. Invent.math. 42, 1 (1977).CrossRefGoogle Scholar
  38. 38).
    Harish-Chandra: Representations of Semisimple Lie groups IV-VI. Amer.J.Math. 77, 743 (1955); 78, 1 (1956); 78, 564 (1956).Google Scholar
  39. 39).
    V.Bargmann: On a Hilbert Space of Analytic Functions and an Associated Integral Transform I. Comm. Pure Appl. Math. 14, 187 (1961)Google Scholar
  40. 40).
    H.Cartan, J.-P.Serre: Un théoréme de finitude concernant les variétés analytiques compactes. C.R.Acad.Sci.Paris237, 128–130 (1953).Google Scholar
  41. 41).
    S.Helgason:A Duality for Symmetric Spaces with Applications to Group Representations I. Advan.Math. 5, 1–154 (1953)CrossRefGoogle Scholar
  42. 42).
    J.Dobaczewski: A Unification of Boson Expansion Theories I. Nucl. Phys. A369 213 (1981).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • V. Ceausescu
    • 1
  • A. Gheorghe
    • 1
  1. 1.Central Institute of PhysicsRomania

Personalised recommendations