Classical r-matrices, lax equations, poisson lie groups and dressing transformations

  • M. A. Semenov-Tian-Shansky
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 280)


We discuss the theory of Poisson Lie groups which provides a natural framework for the study of integrable Hamiltonian systems on a lattice and of the dressing transformations in soliton theory.


Poisson Bracket Poisson Structure Jacobi Identity Poisson Manifold Loop Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sklyanin E.K. On complete integrability of the Landau-Lifshitz equation. Preprint LOMI. E-3-79, Leningrad: LOMI, 1980.Google Scholar
  2. 2.
    Belavin A.A., Drinfel'd V.G. On the solutions of the classical Yang-Baxter equation.Funct. Anal. and its Appl., 16 (1982), 159–180.Google Scholar
  3. 3.
    Semenov-Tian-Chansky M.A. What is the classical r-matrix. Funct. Anal. and its Appl. 17 (1983), 259–272.Google Scholar
  4. 4.
    Kostant B. Quantization and representation theory.-In Proc. of the Research Symp. on Representations of Lie groups, Oxf., 1977, London Math. Soc.Lect. Notes Series, 1979, v.34.Google Scholar
  5. 5.
    Drinfel'd V.G. Hamiltonian structures on Lie groups, Lie bialgebras and the geometrical meaning of Yang-Baxter equations. Sov. Math. Doklady 27 (1983), 68.Google Scholar
  6. 6.
    Zakharov V.E., Shabat A.B.Integration of nonlinear equations by the inverse scattering method. II. Funct. Anal. and its Appl. 13 (1979), 166–174.Google Scholar
  7. 7.
    Date E., Jimbo M., Kashiwara M., Miwa T.Transformation groups for soliton equations. Proc.Japan. Acad. Sci. 57 A (1981), 3806–3816; Physica-4D (1982), 343-365. Publ.RIMS Kyoto Univ. 18 (1982), 1077-1119.Google Scholar
  8. 8.
    Segal G., Wilson G. Loop groups and the equations of KDV type, Publ. Math. I.H.E.S. 61 (1985), 4–64.Google Scholar
  9. 9.
    Wilson G. HAbillage et fonctions, C.R.Acad.Sci. Paris, 299 (1984), 587–590.Google Scholar
  10. 10.
    Semenov-Tian-Chansky M.A. Dressing transformations and Poisson group actions. Publ. RIMS Kyoto Univ. 21 (1986), N6.Google Scholar
  11. 11.
    Reyman A.G., Semenov-Tian-Chansky M.A.Reduction of Hamiltonian systems, affine Lie algebras and Lax equations. I, II. Invent. Math., 54 (1979), 81–100; 63(1981), 423-432.Google Scholar
  12. 12.
    Adler M., Moerbeke P. Complete integrable systems, Euclidean Lie algebras and curves. Adv.Math., 38 (1980), 267–317.Google Scholar
  13. 13.
    Reyman A.G., Semenov-Tian-Chansky M.A. A new integrable case of the motion of the 4-dimensional rigid body. Comm. Math.Phys. (106, (1986) 161–172).Google Scholar
  14. 14.
    Cherednik I.V.Definition of-functions for generalized affine Lie algebras. Funct. Anal. Appl. 17 (1983), 243–244.Google Scholar
  15. 15.
    Reyman A.G., Semenov-Tian-Chansky M.A. Lie algebras and Lax equations with the spectral parameter on an elliptic curve, Zapiski Nauchn. Semin. LOMI (in Russian), v.155 (1986).Google Scholar
  16. 16.
    Weinstein A., Local structure of Poisson manifolds, J.Diff.Geom., 18 (1983), 523–558.Google Scholar
  17. 17.
    Karasjov M.V., To appear in Sov. Math. Izvestija (1986).Google Scholar
  18. 18.
    Kupershmidt B.A., Discrete Lax equations and differential-difference calculus, Asterisque 123 (1985).Google Scholar
  19. 19.
    Drinfel'd V.G., Sokolov V.V., Equations of KdV type and simple Lie algebras. Sov. Math. Doklady, 23 (1981), 457–462.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • M. A. Semenov-Tian-Shansky
    • 1
  1. 1.Ecole Normale SupérieureParis

Personalised recommendations