Supersymmetric extension of twistor formalism

  • J. Lukierski
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 280)


Pure Spinor Twistor Space Supersymmetric Extension Null Line Spinor Twistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Penrose and W. Rindler, “Spinors and Space-Time”, Vol.2,Cambridge Univ.Press, 1986, and the literature quoted thereinGoogle Scholar
  2. 2.
    R. Ward, Phys.Lett.A61,81,1977Google Scholar
  3. 3.
    M.F. Atiyah, V.G. Drinfeld, N.I.Hitchin and Yu.I.Manin, Phys.Lett. A65,185 (1978)Google Scholar
  4. 4.
    R. Penrose in “Advances in Twistor Theory”, ed.L.P.Hugston and R.S. Ward, Pitman,London, 1979Google Scholar
  5. 5.
    L.J. Mason, Twistor Newsletters,No. 19 and 20Google Scholar
  6. 6.
    E. Witten, Phys.Lett.77B,394 (1978)Google Scholar
  7. 7.
    J.Isenberg, P.B.Yasskin and P.Green, Phys.Lett.78B,462 (1978)Google Scholar
  8. 8.
    G.M. Henkin and Yu.I.Manin, Phys.Lett.95B,405 (1980)Google Scholar
  9. 9.
    Yu.I.Manin “Gauge fields and complex geometry”, ed.Nauka, Moscow 1984 (in Russian)Google Scholar
  10. 10.
    J. Isenberg and P. Yasskin, Gen.Rel.Grav.14,621 (1982)Google Scholar
  11. 11.
    C.R. Le Brun, C1ass.Quantum Grav. 2,555 (1985)Google Scholar
  12. 12.
    L.P. Hughston, “Twistors and Particles”, Lect. Notes in Phys.No 79 (Springer), 1979Google Scholar
  13. 13.
    A. Ferber, Nucl.Phys.B132,55 (1978)Google Scholar
  14. 14.
    E. Witten, Nucl.Phys.B266,245 (1986)Google Scholar
  15. 15.
    W. Siegel, Phys.Lett.128B,397 (1983)Google Scholar
  16. 16.
    J. Crispin-Romão, A. Ferber and P. Freund, Nucl.Phys.B182,45 (1981)Google Scholar
  17. 17.
    I.V. Volovich, Teor.Math.Fiz.54,89 (1983) (in Russian)Google Scholar
  18. 18.
    C. Devchand, “Integrability on light-like lines in six-dimensional superspace”, Freiburg Univ.preprint,1986Google Scholar
  19. 19.
    Yu.I. Manin in “Problems of High Energy Physics and QFT”, Proc.Protvino Seminar 1982,p.46Google Scholar
  20. 20.
    A.M. Semikhatov, Phys.Lett.120B,171 (1983)Google Scholar
  21. 21.
    I.V. Volovich, Teor.Math.Fiz.55,39 (1983) (in Russian)Google Scholar
  22. 22.
    J. Lukierski and W. Zakrzewski, to appear as ICTP preprintGoogle Scholar
  23. 23.
    A.A. Rosly, C1ass.Quantum Grav.2,693 (1985)Google Scholar
  24. 24.
    M.T. Grisaru, P.S. Hove, L. Mezincescu, B.E.W. Nillson and P.K. Townsend, Phys.Lett.162B,116 (1985)Google Scholar
  25. 25.
    E. Bergshoff, E. Sezgin and P.K. Townsend, Phys.Lett.169B,191 (1986)Google Scholar
  26. 26.
    J. Isenberg and P. Yasskin, Ambitwistors (and strings?), preprint 1986Google Scholar
  27. 27.
    W. Siegel, Nucl.Phys.B263,93 (1985)Google Scholar
  28. 28.
    P.G.O. Freund and L. Mezincescu, preprint EFI 86-11(1986)Google Scholar
  29. 29.
    J. Rzewuski, Nuovo Cim.5,942 (1958)Google Scholar
  30. 30.
    J. Kocik and J. Rzewuski, “On projections of spinor spaces onto Minkowski space”, to be published in “Symmetries in Science II”, ed. B. Gruber, Plenum Press, New York, 1986Google Scholar
  31. 31.
    R.O. Wells Jr. Bull.Am.Math.Soc.(New Serie) 1,296 (1979)Google Scholar
  32. 32.
    W. Lisiecki and A. Odzijewicz, Lett.Math.Phys.3,325 (1979)Google Scholar
  33. 33.
    I.T. Todorov, “Conformal description of Spinning particles”, SISSA preprint 1/81Google Scholar
  34. 34.
    R. Haag, J. Łopuszanski, and M. Sohnius, B88,257(1975)Google Scholar
  35. 35.
    S. Ferrara, M. Kaku, P. van Nieuvenhuizen and P.K.Townsend, Nucl. Phys.B129,125 (1977)Google Scholar
  36. 36.
    F.A. Berezin, ITEP preprint ITEP-76,1977Google Scholar
  37. 37.
    F. Gursey and L. Marchildon, J.Math.Phys.19,942 (1979)Google Scholar
  38. 38.
    J. Lukierski, “From supertwistors to composite superspace”, Wrocław Univ.preprint 534, 1981Google Scholar
  39. 39.
    L.B. Litov and V.N. Pervushin, Phys.Lett.B147,76 (1984)Google Scholar
  40. 40.
    M. Kotrla and J. Niederle, Czech.J.Phys.B35,602 (1985)Google Scholar
  41. 41.
    W.T. Shaw, C1ass.Quantum Grav. 3,753 (1986)Google Scholar
  42. 42.
    L.P. Hughston and W.T. Shaw, “Minimal Curves in Six Dimensions”,MIT preprint, 1986Google Scholar
  43. 43.
    P. Budinich, “Null vectors, spinors and strings”, SISSA preprint 10/86Google Scholar
  44. 44.
    W.T. Shaw, “Classical Strings and Twistor Theory: How to solve string equations without-using the light-cone gauge”, Talk at VC Santa Cruz AMS meeting, June 1986Google Scholar
  45. 45.
    T. Kugo and P. Townsend, Nucl.Phys.B221,357 (1983)Google Scholar
  46. 46.
    A. Sudbury, J.Phys.A17,939 (1984)Google Scholar
  47. 47.
    R.L. Bryant, Duke Math.J. 52,223 (1985)Google Scholar
  48. 48.
    A.M. Semikhatov, JETP Letters 41,201 (1985)Google Scholar
  49. 49.
    A.M. Semikhatov, “Harmonic superspaces and the division algebras”, Lebedev Inst.preprint No 339(1985)Google Scholar
  50. 50.
    R. Gilmore, “Lie groups, Lie algebras and some of their applications”, Willey, New York, 1984Google Scholar
  51. 51.
    Z. Hasiewicz, J. Lukierski and P. Morawiec, Phys.Lett.130B,55 (1983)Google Scholar
  52. 52.
    J. Lukierski and A. Nowicki, Ann.of Phys.166,164 (1986)Google Scholar
  53. 53.
    V. Kac, Comm.Math.Phys.53,31 (1977)Google Scholar
  54. 54.
    Z. Hasiewicz and J. Lukerski, Phys.Lett.145B,65 (1984)Google Scholar
  55. 55.
    V.I. Ogievetski and E.S. Sokhaczew, Yadernaja Fiz.31,205 (1980)Google Scholar
  56. 56.
    A. Galperin, E.Ivanov, S.Kalitzin, V.O.Ogievetski and E.Sokhaczew Class.Quantum Grav.1,469 (1984)Google Scholar
  57. 57.
    A.A.Rosly and A.S.Schwarz, ”Supersymmetry in a space with auxiliary dimensions”, ITEP preprint 39/1985Google Scholar
  58. 58.
    W.T. Shaw, Class.Quantum Grav.2,L113 (1985)Google Scholar
  59. 59.
    K. Weierstrass, Monats.Berl.Acad.612 (1866)Google Scholar
  60. 60.
    M. Montcheuil, Bull.Soc.Math.France 33,170 (1905)Google Scholar
  61. 61.
    L.P. Eisenhart, Ann.Math.(Ser.II),13,17 (1911)Google Scholar
  62. 62.
    M.A.H. Mac Callum and R. Penrose, Phys.Rep.6,241 (1972)Google Scholar
  63. 63.
    A.P. Hodges, Proc.R.Soc.Lond.A397,375 (1985)Google Scholar
  64. 64.
    J. Rzewuski, Acta Phys.Polon.18,549 (1959)Google Scholar
  65. 65.
    J. Rzewuski, Rep.Math.Phys.22,235 (1985)Google Scholar
  66. 66.
    J. Lukierski, Lett.Nuovo Cim.24,309 (1979)Google Scholar
  67. 67.
    J. Lukierski in “Hadronic Matter at Extreme Energy Density”, N. Cabbibo and L. Sartorio, Plenum Press, 1980,p.187Google Scholar
  68. 68.
    J. Lukierski, J.Math.Phys.21,561 (1980)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • J. Lukierski
    • 1
  1. 1.International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations