The ambitwistor program

  • James Isenberg
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 280)


Twistor Space Null Geodesic Twistor Theory Gravitational Field Equation Orthonormal Frame Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Comprehensive reviews of twistor theory appear in:Penrose, R. and Ward, R.S., “Twistors for Flat and Curved Spacetime” in General Relativity and Gravitation (ed. A. Held), Plenum, 1980; Hughston, L.P. and Ward, R.S., Advances in Twistor Theory, Pitman, 1979; Wells, R.O., Complex Geometry in Mathematical Physics, SMS #78, Les Presses de l'Univ. de Montreal, 1982; Penrose, R., and Rindler, W., Spinors and Space-time (2 volumes) Cambridge, 1984–1985; Hugget, S.A., and Tod, K.P., An Introduction to Twistor Theory, Cambridge, 1985.Google Scholar
  2. 2.
    For a discussion of CM, see Penrose and Rindler, ref. [1].Google Scholar
  3. 3.
    These spaces, as well as others which play an important role in the twistor programme, are all “flag manifolds” of T = C4. See Wells, R., Complex Geometry in Mathematical Physics, Les Presses de L'Universite de Montreal, 1982.Google Scholar
  4. 4.
    See references above, or Newman, E.T. and Hansen, R., Gen. Rel. Grav. 6, 361, 1975.Google Scholar
  5. 5.
    Ward, R., Phys. Lett. A61, 81, 1977.Google Scholar
  6. 6.
    Atiyah, M., and Ward, R., Comm. Math. Phys. 59, 117, 1977.Google Scholar
  7. 7.
    Atiyah, M.F., Drinfeld, V.G., Hitchin, N.Y., and Manin, Yu. I., Phys. Lett. A65, 185, 1978. Atiyah, M.F., Geometry of Yang-Mills Fields, Scuola Normale Superiore, 1979.Google Scholar
  8. 8.
    We refer especially to the work on “Fake Ros”. See Donaldson, S., J. Diff. Geom. 18, 269, 1983; and Freed, D., and Uhlenbeck, K., Instantons and Four-Manifolds, Springer, 1984.Google Scholar
  9. 9.
    Coleman, S., “The Uses of Instantons”, lecture notes from 1977 International School of Subnuclear Physics, 1977.Google Scholar
  10. 10.
    Isenberg, J., Yasskin, P.B., and Greep, P., Phys. Lett. 78B, 462, 1978. Isenberg, J. and Yasskin P.B., “Twistor Description of Non-Self-Dual Yang-Mills Fields”, in Complex Manifold Techniques in Theoretical Physics (eds. D. Lerner and P. Sommers), Pitman, 1979.Google Scholar
  11. 11.
    Witten, E., Phys. Lett. 77B, 394, 1978.Google Scholar
  12. 12.
    Witten, E., Nucl. Phys., B266, 245, 1986.Google Scholar
  13. 13.
    A “deformation” of a complex manifold may be understood as a smoothly parametrized set of transformations of the complex transition functions (on patch overlaps) which define the holomorphic structure of the manifold. The paramtrized set must include the identity transformation.Google Scholar
  14. 14.
    Penrose, R., Gen. Rel. Grav. 7, 31, 1976. Curtis, W.D., Lerner, P.F., and Miller, F.R., Gen. Rel. Grav. 10, 557, 1976. Hitchin, N.J., Math. Proc. Camb. Phil. Soc. 85, 465, 1979.Google Scholar
  15. 15.
    Yasskin, P.B., and Isenberg, J., Gen. Rel. Grav. 14, 621, 1982.Google Scholar
  16. 16.
    LeBrun, C., Trans AMS 278, 208, 1983. Eastwood, M., Twistor Newsletter 17, 1983. Basten, R., and Mason, L., Twistor Newsletter 21, 1986.Google Scholar
  17. 17.
    Isenberg, J., and Yasskin, P., Twistor Newsletter 22, 1986.Google Scholar
  18. 18.
    Unpublished.Google Scholar
  19. 19.
    Weirstrauss, K., Monats, Berliner Akad., 612, 1866.Google Scholar
  20. 20.
    Shaw, W., Class and Qtm Grav 2, 113, 1985. Shaw, W., to appear in Mathematics in General Relativity, (ed., J. Isenberg) AMS Contemp Math.Google Scholar
  21. 21.
    It would be interesting if someone were to apply some of Segal's ideas on quantum field to the space of classical string field solutions which arises in Shaw's work. See Segal, I., J. Math. Phys. 1, 468, 1959.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • James Isenberg
    • 1
  1. 1.Dept. of MathematicsUniversity of OregonEugeneUSA

Personalised recommendations