Monopole and vortex scattering

  • N. J. Hitchin
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 280)


Gauge Transformation Symplectic Form Symplectic Manifold Magnetic Monopole Higgs Field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.P. Atiyah & N.J. Hitchin, Low energy scattering of nonabelian monopoles, Phys. Lett. 107A (1985), 21–25.Google Scholar
  2. [2]
    M.F. Atiyah & N.J. Hitchin, “The geometry and dynamics of magnetic monopoles”, Princeton University Press (to appear).Google Scholar
  3. [3]
    S.K. Donaldson, Nahm's equations and the classification of monopoles, Commun. Math. Phys. 960 (1984), 387–407.Google Scholar
  4. [4]
    G. Gibbons & S.W. Hawking, Gravitational multiinstantons, Phys. Lett. B78 (1978), 430–432.Google Scholar
  5. [5]
    G. Gibbons & C. Pope, The positive action conjecture and asymptotically Euclidean metrics in quantum gravity, Commun. Math. Phys. 66 (1979), 267–290.Google Scholar
  6. [6]
    G.H. Halphen, Sur un systeme d'equations differentielles, C.R. Acad. Sci. Paris 92 (1881), 1101–1103.Google Scholar
  7. [7]
    N.J. Hitchin, Metrics on moduli spaces, in “Contemporary Mathematics”, Volume 58, Part 1 (1986), American Mathematical Society, Providence.Google Scholar
  8. [8]
    N.J. Hitchin, A Karlhede, U. Lindström. & M. Roček, Hyperkähler metrics and supersymmetry, Commun. Math. Phys. (to appear).Google Scholar
  9. [9]
    A. Jaffe & C.H. Taubes, “Vortices and monopoles”, Birkhauser, Boston (1980).Google Scholar
  10. [10]
    N.S. Manton, A remark on the scattering of BPS monopoles, Phys. Lett. 110 B (1982), 54–56.Google Scholar
  11. [11]
    H.J. de Vega & F.A. Schaposnik, Phys. Rev. D14 (1976), 1100. *** DIRECT SUPPORT *** A3418216 00004Google Scholar

Copyright information

© Spriner-Verlag 1987

Authors and Affiliations

  • N. J. Hitchin
    • 1
  1. 1.Mathematical InstituteOxfordEngland

Personalised recommendations