Advertisement

Gravitons in de sitter space

  • Bruce Allen
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 280)

Abstract

What has been shown in this talk is that the graviton propagator in de Sitter space is OK. If one makes a bad choice of gauge (-fixing term) then the propagator is infra-red divergent. However this is not a problem. You can either make a better choice of gauge (of which there are an infinite number), for which the propagator is completely, finite, or else you can go right ahead and use the infra-red divergent one. We demonstrated that it doesn't matter. Gauge-invariance is the over-riding principle, and it ensures that even if the propagator has an infra-red divergence, the physical scattering amplitudes are finite.

A more detailed discussion of these points can also be found in an earlier published paper |20|. The complete closed form for the graviton propagator with ε = ½ has also been found |22|. Finally a closed form in the de Sitter -non-invariant gauge (1.1) has been recently obtained |26|. This form applies to any spatially-flat Robertson-Walker model.

Keywords

Gauge Transformation Graviton Propagator Spacelike Separation Gauge Artifact Background Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation (Freedman, San Francisco, 1973) p. 410.Google Scholar
  2. 2.
    I. Antoniadis, J. Iliopoulos, T.A. Tomaras, Nucl.Phys. B261 (1985) 157.Google Scholar
  3. 2a.
    I. Antoniadis and N.C. Tsamis, Phys.Lett. 144B (1984) 55.Google Scholar
  4. 2b.
    E. Baum, Phys.Lett. 133B (1983) 185.Google Scholar
  5. 3.
    G. Gibbons, S.W. Hawking and S.T.C. Siklos, The Very Early Universe, Proceedings of the Nuffield Workshop (Cambridge UP, 1983).Google Scholar
  6. 3a.
    R. Brandenburger, Rev.Mod.Phys. 57 (1985) 1.Google Scholar
  7. 4.
    B. deWit and R. Gastmans, Nucl.Phys. B128 (1985) 1.Google Scholar
  8. 5.
    N.P. Myhrvold, Phys.Lett. 132B (1983) 308.Google Scholar
  9. 5a.
    N.P. Myhrvold, Phys.Rev. D28 (1983) 2439.Google Scholar
  10. 5b.
    E. Mottola, Phys.Rev. D31 (1985) 754.Google Scholar
  11. 5c.
    E. Mottola, Phys.Rev. D33 (1986) 1616.Google Scholar
  12. 5d.
    E. Mottola, NSF-ITP 85-33 preprint UCSB. E. Mottola and P. Mazur, NSF-ITP 85-153 preprint UCSB.Google Scholar
  13. 5e.
    S. Wada and T. Azuma, Phys.Lett. 132B (1983) 313.Google Scholar
  14. 6.
    P. Anderson, University of Florida at Gainesville preprint, 1985.Google Scholar
  15. 7.
    Gary T. Horowitz, Phys.Rev. D21 (1980) 1445.Google Scholar
  16. 8.
    G.W. Gibbons and S.W. Hawking, Phys.Rev. D15 (1977) 2738.Google Scholar
  17. 9.
    B. Allen, Ann.Phys. 161 (1985) 152.Google Scholar
  18. 1.
    B. Allen, Nucl.Phys. B226 (1983) 228.Google Scholar
  19. 10.
    S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Spacetime (Cambridge UP, 1980).Google Scholar
  20. 11.
    O. Nachtmann, Commun.Math.Phys. 6 (1967) 1.Google Scholar
  21. 11a.
    N.A. Chernikov and E.A. Tagirov, Ann.Inst. Henri Poincaré IX (1968) 109.Google Scholar
  22. 11b.
    J. Géhéniau and Ch. Schomblond, Bull.Cl.Sci., V.Ser.Acad.R.Belg. 54 (1968) 1147.Google Scholar
  23. 11c.
    E.A. Tagirov, Ann.Phys. 76 (1973) 561.Google Scholar
  24. 11d.
    P. Candelas and D.J. Raine, Phys.Rev. D12 (1975) 965.Google Scholar
  25. 11e.
    Ch. Schomblond and P. Spindel, Ann.Inst. Henri Poincaré XXV (1976) 67.Google Scholar
  26. 11f.
    T.S. Bunch and P.C.W. Davies, Proc.Roy.Soc.Lond. A360 (1978) 117.Google Scholar
  27. 11g.
    B. Allen, Phys.Rev. D32 (1985) 3136.Google Scholar
  28. 11h.
    B. Allen and T. Jacobson, Commun.Math.Phys. 103 (1986) 669.Google Scholar
  29. 11i.
    B. Allen and C.A. Lütken, Commun.Math.Phys. 106 (1986) 201.Google Scholar
  30. 12.
    O. Nachtman in reference 11.Google Scholar
  31. 12a.
    O. Nachtman, Z. Phys. 208 (1968) 113.Google Scholar
  32. 12b.
    O. Nachtman, Sitzungsber. Oesterr.Akad.Wiss.Math.Naturwiss.Kl. 167 (1968) 363.Google Scholar
  33. 12c.
    G.W. Gibbons and M.J. Perry, Proc.R.Soc.Lond. A358 (1978) 467.Google Scholar
  34. 13.
    I. Antoniadis, J. Iliopoulos and T.N. Tomaras, Phys.Rev.Lett. 56 (1986) 1319.Google Scholar
  35. 14.
    C. Itzykson and J.B. Zuber, Quantum Field Theory (McGraw-Hill, NY, 1980).Google Scholar
  36. 15.
    S. Coleman and E.J. Weinberg, Phys.Rev. D7 (1973) 1888.Google Scholar
  37. 16.
    This of course is the infinitesimal form of the gauge transformation. To generate finite transformations we have to go to higher order in V.Google Scholar
  38. 17.
    The Fadeev-Popov determinantIhabI does not depend upon hab at one-loop, and thus does not contribute to the tree-level propagator. We have therefore left this Jacobian out of the formula for Gaba′b′.Google Scholar
  39. 18.
    B. Allen and T. Jacobson in reference 11.Google Scholar
  40. 19.
    S.M. Christensen and M.J. Duff, Nucl.Phys. B170 (1980) 480.Google Scholar
  41. 19a).
    N.H. Barth and S.M. Christensen, Phys.Rev. D28 (1983) 1876.Google Scholar
  42. 19b).
    B. Allen, Phys. Rev. D34 (1986) 3670.Google Scholar
  43. 20.
    B. Allen in reference 19.Google Scholar
  44. 21a.
    S.L. Adler, Phys.Rev. D6 (1972) 3445, D8 (1973) 2400.Google Scholar
  45. 21b.
    R. Raczka, N. Limic and J. Nierderle, J.Math.Phys. 7 (1966) 1861, 7 (1966) 2026, 8 (1967) 1079.Google Scholar
  46. 21c.
    G.W. Gibbons and M.J. Perry, Nucl.Phys. B146 (1978) 90.Google Scholar
  47. 21d.
    S.M. Christensen, M. Duff, G.W. Gibbons, and M.J. Perry, Phys.Rev.Lett. 45 (1980)161.Google Scholar
  48. 21e.
    A. Higuchi, Yale Preprint YTP 85-22 (1985).Google Scholar
  49. 21f.
    A. Chodos, E. Meyers, Ann.Phys. (NY) 156 (1984) 412.Google Scholar
  50. 21g.
    M.A. Rubin and C.R. Ordonez, J.Math.Phys. 25 (1984) 2888, 26 (1985) 65.Google Scholar
  51. 22.
    B. Allen and M. Turyn, The graviton propagator in maximally symmetric spacer, Tufts University preprint (1986).Google Scholar
  52. 23.
    R. Wald, Phys.Rev. D17 (1978) 1477.Google Scholar
  53. 23a.
    R. Wald, Commun.Math.Phys. 54 (1977) 1.Google Scholar
  54. 23b.
    S.A. Fulling, M. Sweeny and R. Wald, Commun.Math.Phys. 63 (1978) 259.Google Scholar
  55. 24.
    In fact the mode that we have labeled ø1 is degenerate. There are five such modes with the same eigenvalue. If the four-sphere is X2 1 +... + X2 5 = 1 then the modes øli are proportional to the i'th coordinate Xi.Google Scholar
  56. 25.
    The boundary terms can be shown to vanish in the Lorentzian spacetime case-see reference 20.Google Scholar
  57. 26.
    B. Allen, The graviton propagator in homogeneous and isotropic spacetimes, Tufts University Preprint TUTP 86-14 (1986). (submitted to Nucl. Phys.)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Bruce Allen
    • 1
  1. 1.Department of Physics and AstronomyTufts UniversityMedfordUSA

Personalised recommendations