Non linear effects in quantum gravity

  • Ian Moss
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 280)


Canonical quantum gravity can be reduced in a semi-classical limit to conventional quantum gravity on a curved spacetime background. Changes in the topology of space require a reformulation of the theory which introduces density matrices or nonlinear terms into the semi-classical limit.


Wave Function Quantum Gravity Matter Field Quantum Cosmology Canonical Quantum Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.H. Guth, Phys. Rev. D23 (1981) 347.Google Scholar
  2. 2.
    S.W. Hawking, Pontif. Accad. Sci. Varia, 48 (1982) 563.Google Scholar
  3. 3.
    J.B. Hartle and S.W. Hawking, Phys. Rev. D23 (1983) 2960.Google Scholar
  4. 4.
    I.G. Moss and W.A. Wright, Phys. Rev. D29 (1984) 1067.Google Scholar
  5. 5.
    S.W. Hawking and J. Luttrell, Nuc. Phys. B247 (1984) 250.Google Scholar
  6. 6.
    I.G. Moss, “The New Cosmogony”, to appear in the proceedings of the IV Marcel Grossman Meeting, Rome 1985.Google Scholar
  7. 7.
    B.S. DeWitt and N. Graham, eds. “The Many Worlds Interpretation of Quantum Mechanics”, Princeton University Press 1973.Google Scholar
  8. 8.
    B.S. DeWitt, Phys. Rev. 160 (1967) 1113.Google Scholar
  9. 9.
    J.A. Wheeler, in“Battelle Rencontres”, eds. C. DeWitt and J.A. Wheeler, Benjamin New York, 1968.Google Scholar
  10. 10.
    S.W. Hawking and D.N. Page, Nuc. Phys. B264 (1986) 185.Google Scholar
  11. 11.
    T. Banks, Nuc. Phys. B249 (1985) 332.Google Scholar
  12. 12.
    S.W. Hawking, “The density matrix of the universe” (Cambridge preprint 1986).Google Scholar
  13. 13.
    D.N. Page, ”Density matrix of the universe” ( Pennsylvania preprint 1986 ).Google Scholar
  14. 14.
    E.S. Fradkin and G.A. Vilkoviski, Phys. Lett. 55B (1975) 224.Google Scholar
  15. 15.
    D.Bohm and J. Bub, Rev. Mod. Phys. 38 (1966) 453.Google Scholar
  16. 16.
    A.R. Bishop and T. Schneider, eds. “Solitons and Condensed Matter Physics” (Springer-Verlag, Berlin 1978).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Ian Moss
    • 1
  1. 1.Department of Theoretical PhysicsUniversity of Newcastle upon TyneNewcastle upon TyneUK

Personalised recommendations