Kaluza-Klein approach to superstrings

  • M. J. Duff
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 280)


We apply Kaluza-Klein techniques to the bosonic string compactified on the E8XE8 group manifold to derive properties of ten-dimensional superstrings, thus lending support to the idea that the bosonic string is the fundamental theory. We then pose the question of why physical space-time has just four dimensions.


Gauge Group Gauge Boson Transformation Rule Heterotic String Bosonic String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Green, M.B. and Schwarz, J.H., Phys. Lett. B149, 117 (1984).Google Scholar
  2. 2).
    Freund, P.G.O., Phys. Lett. B151, 387 (1985).Google Scholar
  3. 3).
    Frenkel, I. and Kac, V.G., Inv. Math. 62, 23 (1980)Google Scholar
  4. 3a).
    Goddard, P. and Olive, D., in “Workshop on Vertex Operators in Mathematics and Physics”, Berkeley (1983).Google Scholar
  5. 4).
    Gross, D., Harvey, J., Martinec, E. and Rohm, R., Phys. Rev. Lett. 54, 502 (1985); Nucl. Phys. B256, 253 (1985).Google Scholar
  6. 5).
    Witten, E., Comm. Math. Phys. 92, 455 (1984)Google Scholar
  7. 5a).
    Nemeschensky, D. and Yankielowicz, S., Phys. Rev. Lett. 54, 620 (1984)Google Scholar
  8. 5b).
    Altschiller, D. and Nilles, H.P., Phys. Lett. 154B, 135 (1985)Google Scholar
  9. 5c).
    Goddard, P. and Olive, D., Nucl. Phys. B257; 226 (1985)Google Scholar
  10. 5d).
    Jain, S., Shankar, R. and Wadia, S.R., Phys. Rev. D32, 2713 (1985)Google Scholar
  11. 5e).
    Bergshoeff, E. Randjbar-Daemi, S., Salam, A., Sarmadi, H. and Sezgin, E., Nucl. Phys. B269, 77 (1986).Google Scholar
  12. 6).
    Duff, M.J., Nilsson, B.E.W. and Pope, C.N., Phys. Lett. B163, 343 (1985), also published in Proc. Cambridge Workshop on Supersymmetry and its applications (June–July 1985), (Eds. Gibbons, Hawking and Townsend, C.U.P. 1986).Google Scholar
  13. 7).
    Duff, G, Nilsson, B.E.W. and Pope, C.N., Physics Reports 130, 1 (1986).Google Scholar
  14. 8).
    Casher, A., Englert F., Nicolai, H. and Taormina, A., Phys. Lett. B162, 121 (1985); see alsoGoogle Scholar
  15. 8) a.
    Englert, F., Nicolai, H. and Schellekens, A., CERN preprint TH.4360/86 (1986).Google Scholar
  16. 9).
    Charap, J.M. and Duff, M.J., Phys. Lett. B69, 445 (1977).Google Scholar
  17. 10).
    Duff, M.J., Nilsson, B.E.W., Pope, C.N. and Warner, N.P., Phys. Lett. 171B, 170.Google Scholar
  18. 11).
    Hull, C.M., Nucl. Phys. B267, 266 (1986).Google Scholar
  19. 12).
    Duff, M.J., in Proceedings of the GR11 Conference, Stockholm, July 1986, CERN preprint TH.45.68/86.Google Scholar
  20. 13).
    Duff, M.J., in Proceedings of the 1985 Les Houches Summer School (Eds. Ramond and Stora).Google Scholar
  21. 14).
    de Wit, B. and Nicolai, H., CERN preprint TH.4359/86 (1986).Google Scholar
  22. 15).
    Chamseddine, A., Duff, M.J., Nilsson, B.E.W., Ross, D. and Pope, C.N., in preparation.Google Scholar
  23. 16).
    Duff, M.J. and Nilsson, B.E.W., Phys. Lett. 175B, 417 (1986).Google Scholar
  24. 17).
    Narain, K.S., Phys. Lett. B169, 41 (1986).Google Scholar
  25. 18).
    Freedman, M., Diff. J. Geom. 17, 357 (1983).Google Scholar
  26. 19).
    Stern, R.J., The Mathematical Intelligencer 5, 39 (1985).Google Scholar
  27. 20).
    Rochlin, V.A., Dokl. Akad. Nauk SSR 84, 221 (1952).Google Scholar
  28. 21).
    Donaldson, S.K., Bull. Amer. Math. Soc. 8, 81 (1983).Google Scholar
  29. 22).
    Dixon, L., Harvey, J.A., Vafa, C. and Witten, E., Nucl. Phys. B261, 678 (1985).Google Scholar
  30. 23).
    Lam, C.S. and Da-Xi Li, McGill University preprints (1985). *** DIRECT SUPPORT *** A3418216 00002Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • M. J. Duff
    • 1
  1. 1.Theory DivisionCERNGeneva 23Switzerland

Personalised recommendations