Advertisement

The third quantization of phase space and bilocal lattice fields

E. Symplectic Geometry and Quantization
Part of the Lecture Notes in Physics book series (LNP, volume 278)

Keywords

Operator Equation Discrete Spectrum Heisenberg Picture Lorentz Frame Partial Difference Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    A.Das Nuovo Cim. 18 (1960), 482.ADSCrossRefGoogle Scholar
  2. 2).
    E.Arnous and W.Heitler, Nuovo Cim. 11 (1959), 443.ADSCrossRefGoogle Scholar
  3. 2a).
    E.Arnous, W.Heitler, and Y.Takahashi, Nuovo Cim. 16 (1960), 671.ADSCrossRefGoogle Scholar
  4. 3).
    H.Yukawa, Phys. Rev. 76 (1949),300; 77 (1950),219; 80 (1950), 1047.ADSCrossRefGoogle Scholar
  5. 4).
    A.Pais and G.E.Uhlenbeck, Phys. Rev. 79 (1950), 145.ADSCrossRefGoogle Scholar
  6. 5).
    C.Lanczos, The Variational Principles of Mechanics (University of Toronto Press, Toronto, 1966), p.186.MATHGoogle Scholar
  7. 6).
    H.Snyder, Phys. Rev. 71 (1947),38; 72 (1948), 68.ADSCrossRefGoogle Scholar
  8. 7).
    M.Born, Proc. Roy. Soc. A165 (1938), 291; A116 (1938), 552; Nature 163 (1949), 207; Rev. Mod. Phys. 21 (1949), 463.ADSCrossRefGoogle Scholar
  9. 8).
    A.Das, J. Math. Phys. 7 (1966), 45, 52.ADSCrossRefGoogle Scholar
  10. 9).
    A.Das, J. Math. Phys. 21 (1980), 1506, 1513, 1521.ADSCrossRefGoogle Scholar
  11. 10).
    A.Das, Prog. Theor. Phys. 68 (1982), 336, 341.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • A. Das
    • 1
  1. 1.Department of MathematicsSimon Fraser University BurnabyBritish Columbia V5A 1S6Canada

Personalised recommendations