Reduction of degenerate lagrangians and the symplectic reduction theorem

  • Luis A. Ibort
E. Symplectic Geometry and Quantization
Part of the Lecture Notes in Physics book series (LNP, volume 278)


Vector Field Hamiltonian System Legendre Transformation Primary Constraint Reduce Phase Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Abraham & J. Marsden. Foundations of Mechanics, 2nd ed. Benjamin/Cummings Publ. Comp., Reading MA (1978).MATHGoogle Scholar
  2. [2]
    F. Cantrijn, J.F. Cariñena, M. Crampin & L.A. Ibort. Reduction of degenerate Lagrangians, Preprint (1986).Google Scholar
  3. [3]
    M.J.Gotay & J.M.Nester. Ann. Inst. H. Poincaré,A30,129–142 (1979)Google Scholar
  4. [4]
    J.F.Cariñena & L.A.Ibort. J.Phys.A:Math. Gen.,18,3335–3341 (1985)ADSCrossRefGoogle Scholar
  5. [5]
    M. Crampin. J. Phys. A:Math. Gen.,16, 3755–3772 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Luis A. Ibort
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeley

Personalised recommendations