Advertisement

Diffeomorphism groups, coadjoint orbits, and the quantization of classical fluids

  • Gerald A. Goldin
  • Ralph Menikoff
  • David H. Sharp
E. Symplectic Geometry and Quantization
Part of the Lecture Notes in Physics book series (LNP, volume 278)

Keywords

Configuration Space Stability Group Point Vortex Momentum Density Coadjoint Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Marsden and A. Weinstein, “Coadjoint Orbits, Vortices, and Clebsch Variables for Incompressible Fluids," in Procs. of the Los Alamos Conference “Order in Chaos”, ed. by D.K. Campbell, H.A. Rose, and A.C. Scott, Physica 7D (1983), 305–323.Google Scholar
  2. 2.
    L. Auslander and B. Kostant, Inventiones Math. 14 (1971), 255. A.A. Kirillov, Ser. Math. Sov. 1 (1981), 351. G.A. Goldin, R. Menikoff, and D.H. Sharp, Phys. Rev. Letts. 51 (1983), 22462249. G.A. Goldin, “Diffeomorphism Groups, Semidirect Products, and Quantum Theory,” in Fluids and Plasmas: Geometry and Dynamics, ed. by J.E. Marsden, Contemp. Math. 28 (1984), 189–207.ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    See also G.A. Goldin and R. Menikoff, J. Math. Phys. 26 (1985), 1880–1884, for quantum dipoles, etc., in a different context.ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Gerald A. Goldin
    • 1
  • Ralph Menikoff
    • 2
  • David H. Sharp
    • 2
  1. 1.Departments of Mathematics and PhysicsRutgers UniversityNew BrunswickUSA
  2. 2.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations