Advertisement

Phase space formulation of general relativity without a 3+1 splitting

  • Abhay Ashtekar
  • Luca Bombelli
  • Rabinder Koul
E. Symplectic Geometry and Quantization
Part of the Lecture Notes in Physics book series (LNP, volume 278)

Keywords

Vector Field Asymptotic Symmetry Cauchy Surface Hamiltonian Vector Field Spatial Infinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Arnowitt, S. Deser and C.W. Misner, in: Gravitation, an introduction to current research, L. Witten ed., Wiley 1962.Google Scholar
  2. [2]
    P.A.M. Dirac, “Lectures on quantum mechanics”, Yeshiva University Press 1964.Google Scholar
  3. [3]
    A. Ashtekar and M. Streubel, Proc. R. Soc. Lond. A376 (1981) 585–607.ADSCrossRefGoogle Scholar
  4. [4]
    A. Ashtekar and A. Magnon-Ashtekar, Comm. Math. Phys. 86 (1982) 55–68.ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Ashtekar, in General relativity and gravitation, vol. 2, A. Held ed., Plenum 1980.Google Scholar
  6. [6]
    R. Beig and B.G. Schmidt, Comm. Math. Phys. 87 (1982) 65–80.ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    P.R. Chernoff and J.E. Marsden, “Properties of infinite dimensional hamiltonian systems”, Springer-Verlag 1974.Google Scholar
  8. [8]
    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Proc. R. Soc. Lond. A269 (1962) 21–52.ADSCrossRefGoogle Scholar
  9. [9]
    R.K. Sachs, Phys. Rev. 128 (1962) 2851–2864.ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    R. Penrose, Proc. R. Soc. Lond. A284 (1965) 159–203.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Abhay Ashtekar
    • 1
  • Luca Bombelli
    • 1
  • Rabinder Koul
    • 1
  1. 1.Physics DepartmentSyracuse UniversitySyracuseUSA

Personalised recommendations