Wigner distribution function approach to the calculation of quantum effects in condensed matter physics

  • R. F. O'Connell
C. Wigner Distributions
Part of the Lecture Notes in Physics book series (LNP, volume 278)


In condensed matter physics, the most common technique used in the calculation of quantum effects is that involving Green's functions, supplemented to a lesser extent by path-integral methods. Here we point out the potential value of the Wigner distribution function approach and we amplify our remarks by considering specific examples. In particular, we discuss our recent work on the extension of the range of applicability of phase-space techniques for the study of quantum systems; this is achieved by developing an expansion for phase-space functions in powers of the interaction potential.


Correlation Function Quantum Effect Generalize Langevin Equation Quantum Distribution Function Harmonic Oscillator Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. D. Mahan, Many-Particle Physics, Plenum (1981).Google Scholar
  2. 2.
    W. H. Louisell, Quantum Statistical Properties of Radiation, Wiley (1975).Google Scholar
  3. 3.
    A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983) and 153, 445 (E) (1984).ADSCrossRefGoogle Scholar
  4. 4.
    S. Donaich and E. H. Sondheimer, Green's Functions for Solid State Physicists, Benjamin (1974); G. Rickayzen, Greens Functions and Condensed Matter, Academic (1980).Google Scholar
  5. 5.
    E. P. Wigner, Phys. Rev. 40, 749 (1932).ADSCrossRefGoogle Scholar
  6. 6.
    M. Hillery, R. F. O'Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106, 121 (1984).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    G. W. Ford, J. T. Lewis, and R. F. O'Connell, Phys. Rev. Lett. 55, 2273 (1985); ibid., J. Phys. B 19, 41 (1986); ibid. Phys. Rev. A (t(Te published).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    R. Dickman and R. F. O'Connell, Phys. Rev. Lett. 55, 1703 (1985).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Kubo, J. Phys. Soc, Japan 12, 570 (1957); ibid., Rep. Prog. Phys. 29, 255 (1966).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    M. S. Green, J. Chem. Phys. 19, 1036 (1951); R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley (1975), pps. 463 and 660.ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    F. Barocchi, M. Neumann, and M. Loppi, Phys. Rev. A 31, 4015 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    A. K. Singh and S. K. Sinha, Phys. Rev. A 30, 1078 (1984).ADSCrossRefGoogle Scholar
  13. 13.
    J. P. Hansen and P. Vieillefosse, Phys. Lett. 53A, 187 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    A. Alastuey and B. Jancovici, Physica 97A, 349 1979); ibid. 102A, 327 (1980).ADSCrossRefGoogle Scholar
  15. 15.
    B. Jancovici, Phys. Rev. 178, 295 (1969).ADSCrossRefGoogle Scholar
  16. 16.
    H. Mori, R. Oppenheim, and J. Ross, in Studies in Statistical Mechanics, edited by J. De Boer and G. E. Uhlenbeck, Wiley (1962), Vol. I.Google Scholar
  17. 17.
    D. C. Kelly, Phys. Rev. 134, A641 (1964).ADSCrossRefGoogle Scholar
  18. 18.
    G. Benford and N. Rostoker, Phys. Rev. 181, 729 (1969).ADSCrossRefGoogle Scholar
  19. 19.
    F. Brosens, L. F. Lemmens, and J. T. Devreese, Phys. Stat. Sol. (b) 74, 45 (1976); ibid. 81, 551 (1977).ADSCrossRefGoogle Scholar
  20. 20.
    T. Hasegawa and M. Shimizu, J. Phys. Soc. Japan 38, 965 (1975).ADSCrossRefGoogle Scholar
  21. 21.
    J. R. Barker, in Physics of Non-Linear Transport in Semiconductors, edited by D. K. Ferry, J. R. Barker and N.. Jacaboni, Plenum 1980); J. R. Barker and S. Murray, Phys. Lett. 93A, 271 (1983).Google Scholar
  22. 22.
    J. R. Barker and D. K. Ferry, Solid-State Electronics 23, 519 (1980).ADSCrossRefGoogle Scholar
  23. 23.
    G. J. Iafrate, H. L. Grubin, and D. K. Ferry, J. de Physique Colloq. 42, C7 (1981).Google Scholar
  24. 24.
    H. L.,Grubin, D. K. Ferry, G. J. Iafrate and J. R. Barker, in VLSI Electronics: Microstructure Science, Vol. 3, Academic (1982).Google Scholar
  25. 25.
    R. K. Reich and D. K. Ferry, Phys. Lett. 91A, 31 (1982).ADSCrossRefGoogle Scholar
  26. 26.
    A. P. Jauho, Phys. Rev. B 32, 2248 (1985).ADSCrossRefGoogle Scholar
  27. 27.
    U. Ravaioli, M. A. Osman, W. Potz, N. Kluksdahl and D. K. Ferry, Superlattices and Microstructures, in press; N. Kluksdahl, W. Potz, U. Ravaioli, and 0. K. Ferry, Bull. Am. Phys. Soc. 31, (3), 395 (1986).Google Scholar
  28. 28.
    J. R. Barker, Superlattices and Microstructures, in press.Google Scholar
  29. 29.
    R. Dickman and R. F. O'Connell, Superlattices and Microstructures, in press.Google Scholar
  30. 30.
    R. Dickman and R. F. O'Connell, Phys. Rev. B 32, 471 (1985).ADSCrossRefGoogle Scholar
  31. 31.
    R. Dickman and R. F. O'Connell, to be published.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • R. F. O'Connell
    • 1
  1. 1.Department of Physics and AstronomyLouisiana State UniversityBaton Rouge

Personalised recommendations