Microwave ionization of highly excited hydrogen atoms: Experiment and theory

  • P. M. Koch
  • K. A. H. van Leeuwen
  • O. Rath
  • D. Richards
  • R. V. Jensen
B. Quantum Chaos
Part of the Lecture Notes in Physics book series (LNP, volume 278)


This article elaborates on a talk delivered by the first author at the First International Conference on the Physics of Phase Space (University of Maryland, 20–23 May 1986). It reviews briefly our still limited, but rapidly growing understanding of a dynamical process, the ionization of highly-excited hydrogen atoms by a microwave electric field. Classical dynamics explains surprisingly well many recent experimental results from Stony Brook, on which the article focusses. Some experimental results not well explained, however, appear to be essentially quantal in origin. These are just now beginning to be understood. New, detailed questions continue to arise as older questions are answered.


Classical Dynamic Static Electric Field Quantum Chaos Microwave Electric Field Kepler Orbital Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    From a vast literature we suggest A.J. Lichtenberg and M.A. Lieberman, “Regular and Stochastic Motion,” Springer-Verlag, New York (1983); articles by L.P. Kadanoff and by M.C. Gutzwiller in Physics Scripta, Vol. T9 (1985), a special volume on “The Physics of Chaos and Related Problems”; J.R. Ackerhalt, P.W. Milonni, and M.-L. Shih, Phys. Rep. 128:205(1985).CrossRefMATHGoogle Scholar
  2. 2.
    T. Hogg and B.A. Huberman, Phys. Rev. Lett. 48:711 (1982); Phys. Rev. A28:22(1983).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    J.E. Bayfield and P.M. Koch, Phys. Rev. Lett. 33:258 (1974); J.E. Bayfield, L.D. Gardner, and P.M. Koch, Phys. Rev. Lett. 39:76 (1977); reviewed in P.M. Koch, J. Phys. (Paris), Colloq. 43:02-187 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    J.G. Leopold and I.C. Percival, Phys. Rev. Lett. 41:944 (1978) and J. Phys. B12:709 (1979); D.A. Jones, J.G. Leopold, and I.C. Percival, J. Phys. B13:31 (1980); B.I. Meerson, E.A. Oka, and P.V. Sasorov, J. Phys. B15:3599 (1982); Soviet and other literature on this problem is reviewed in N.B. Delone, V.P. Krainov, and D.L. Shepelyansky, Usp. Fiz. Nauk 140:355 (1983) [Sov. Phys. Usp. 26:551 (1983)].ADSCrossRefGoogle Scholar
  5. 5.
    R.V. Jensen, Phys. Rev. A30:386 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    J.G. Leopold and D. Richards, J. Phys. B18:3369 (1985).ADSGoogle Scholar
  7. 7.
    J.G. Leopold and D. Richards, J. Phys. B19:1125 (1986).ADSGoogle Scholar
  8. 8.
    O. Rath and D. Richards, in preparation.Google Scholar
  9. 9.
    From a growing literature, we suggest G.M. Zaslavsky, Phys. Rep. 80:157 (1981); see, also, many of the articles in “Chaotic Behavior in Quantum Systems: Theory and Applications,” edited by G. Casati, Plenum, New York (1985).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    D. Delande and J.C. Gay, Phys. Rev. Lett. 57:2006 (1986).ADSCrossRefGoogle Scholar
  11. 11.
    P.M. Koch, in Ref. 3. D.R. Mariani and W. van de Water contributed importantly to the microwave ionization results presented in this reference.Google Scholar
  12. 12.
    K.A.H. van Leeuwen, G. v. Oppen, S. Renwick, J.B. Bowfin, P.M. Koch, R.V. Jensen, O. Rath, D. Richards, and J.G. Leopold, Phys. Rev. Lett. 55:2231 (1985); P.M. Koch, in “Fundamental Aspects of Quantum Theory,” A. Frigerio and V. Gorini, editors, Plenum, New York (1986).ADSCrossRefGoogle Scholar
  13. 13.
    P.M. Koch, in: “Rydberg States of Atoms and Molecules,” R.F. Stabbings and F.B. Dunning, editors, Cambridge University Press, New York (1983).Google Scholar
  14. 14.
    J.E. Bayfield and L.A. Pinnaduwage, Phys. Rev. Lett. 54:313 (1985) and J. Phys. B18:L49 (1985); J.N. Bardsley, B. Sundaram, L.A. Pinnaduwage, and J.E. Bayfield, Phys. Rev. Lett. 56:1007(1986); J.E. Bayfield, elsewhere in this volume.ADSCrossRefGoogle Scholar
  15. 15.
    J.G. Leopold and D. Richards, J. Phys. B (to be published, 1987).Google Scholar
  16. 16.
    P.M. Koch and D.R. Mariani, Phys. Rev. Lett. 46:1275 (1981).ADSCrossRefGoogle Scholar
  17. 17.
    K.A.H. van Leeuwen, P.M. Koch, 0. Rath, D. Richards, J.G. Leopold, and R.V. Jensen, in preparation.Google Scholar
  18. 18.
    K.A.H. van Leeuwen and P.M. Koch, in preparation.Google Scholar
  19. 19.
    R. Bluemel and U. Smilansky, Proceedings of Adriatico Research Conference on Quantum Chaos, Trieste, June 1986, to be published in Physics Scripts, 1987.Google Scholar
  20. 20.
    Structure in microwave experiments with helium Rydberg atoms has also been linked to avoided crossings of its Floquet eigenstater; see W. van de Water, K. van Leeuwen, P. Koch, and T. Bargeman, Bull. Am. Phys. Soc. 31:942 (1986).Google Scholar
  21. 21.
    R. Bluemel, U. Smilansky, P.M. Koch, K.A.H. van Leeuwen, O. Rath, and D. Richards, in preparation.Google Scholar
  22. 22.
    G. Casati, B.V. Chirikov, and D.L. Shepelyansky, Phys. Rev. Lett. 63:2525 (1984); G. Casati, B.V. Chirikov, D.L. Shepelyansky, and I. Guarneri, Phys. Rev. Lett. 57:823(1986).ADSCrossRefGoogle Scholar
  23. 23.
    S. Fishman, D.R. Grempel, and R.E. Prange, Phys. Rev. Lett. 49:509 (1982); Phys. Rev. A29:1639(1984).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    J.N. Bardsley and M.J. Comella, J. Phys. B19:L565 (1986).ADSGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • P. M. Koch
    • 1
  • K. A. H. van Leeuwen
    • 1
  • O. Rath
    • 2
  • D. Richards
    • 2
  • R. V. Jensen
    • 3
  1. 1.Physics DepartmentState University of New York at Stony BrookStony Brook
  2. 2.Faculty of MathematicsThe Open UniversityMilton KeynesUK
  3. 3.Applied PhysicsYale UniversityNew Haven

Personalised recommendations