Secondary relaxations and the properties of glasses and liquids

  • G. P. Johari
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 277)


Thermally activated translational and/or rotational motions of groups of atoms or molecules occur in localized regions of the rigid matrix of glasses, glassy liquid crystals and glassy crystals. Known as secondary relaxations, these are observed by dielectric and mechanical relaxation spectroscopy at temperatures near and below Tg and show features which are remarkably similar amongst the various types of disordered solids. An analysis of the heat capacity and entropy of the three types of disordered solids also shows a substantial non-vibrational contribution from the availability of configurational states in localized regions in an internal thermodynamic equilibrium embedded in a rigid matrix. In this article, the relevance of the kinetic and thermodynamic aspects of such relaxations, their temperature, density and time dependence and their link with the low-temperature tunneling states in a glass are considered.

That the tunneling centres responsible for the low temperature thermodynamic behaviour of a glass are linked with, or identified as, those local regions where thermally excited orientational and/or translational diffusion over short distances in an otherwise rigid glassy matrix occurs, is tested by three sets of different experiments, namely, (i) physical ageing, (ii) regions created in crystals by neutron irradiation and (iii) regions created by addition of a second component to a glass. All of these seem to suggest that the concept of a disordered solid as an elastic continuum is unsatisfactory and that a description of its heat capacity should also include the energy associated with the configurational states involved in secondary relaxations.


Physical Ageing Configurational State Excess Entropy Rigid Matrix Residual Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Johari, G.P., Phil. Mag. 46 (1982) 549Google Scholar
  2. [2]
    Johari, G.P., J.W. Goodby and G.E. Johnson, Nature (London) 297 (1982) 315Google Scholar
  3. [3]
    Johari, G.P., and J.W. Goodby, J. Chem. Phys. 77 (1982) 5165Google Scholar
  4. [4]
    Suga, H. and S. Seki, J. Noncryst. Solids 16 (1974) 171Google Scholar
  5. [5]
    Gough, S.R., S.K. Garg and D.W. Davidson, Chem. Phys. 3, 239 (1974). See also Johari, G.P., J. Chem. Phys. 74 (1981) 1326Google Scholar
  6. [6]
    Ross, R.G. and P. Andersson, Can. J. Chem. 60 (1982) 881Google Scholar
  7. [7]
    Johari G.P., and M. Goldstein, J. Chem. Phys. 53 (1970) 2372Google Scholar
  8. [8]
    Johari, G.P., in “Plastic Deformation of Amorphous and Semicrystalline Materials”, Les Houches Lectures 1982, ed. B. Escaig and C.G'Sell (Les Editions du Physique, 1982), p. 109Google Scholar
  9. [9]
    Williams, G. in NATO Advanced Study Institute, Proceedings ed. Orville, Thomas and Yarwood (1983)Google Scholar
  10. [10]
    Johari, G.P., Ann. N.Y. Acad. Sci. 279 (1976) 117Google Scholar
  11. [11]
    Perez, J., J.Y. Cavaille, S. Etienne, F. Fouquet and F. Guyot, Ann. Phys. (Fr.) 8 (1983) 417Google Scholar
  12. [12]
    Pathmanathan, K. and G.P. Johari, J. Phys. C.18 (1985) 6535Google Scholar
  13. [13]
    McCrum, N.G., R.E. Read and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, London 1967)Google Scholar
  14. [14]
    Williams, G., “Static and Dynamic Properties of Solid Polymers”, NATO Advanced Study Institute Proceedings, ed. R. Pethrick and R.W. Richards (D. Reidl Publ. Holland 1982)Google Scholar
  15. [15]
    Mai, C., S. Etienne, J. Perez and G.P. Johari, Phil. Mag. 50 (1984) 657Google Scholar
  16. [16]
    Johari, G.P. and C.P. Smyth, J. Chem. Phys. 56 (1972) 4411Google Scholar
  17. [17]
    Boehm, L. and C.A. Angell, J. Noncryst. Solids 40 (1980) 83Google Scholar
  18. [18]
    Abkowitz, M. and D.M. Pai, Phys. Rev. B18 (1978) 1741Google Scholar
  19. [19]
    Leduc, J. and A.H. Kalantar, J. Chem. Phys. 73, (1980) 5330Google Scholar
  20. [20]
    Etienne, S., J.Y. Cavaille, J. Perez and G.P. Johari, Phil. Mag. 51A (1985) L35Google Scholar
  21. [21]
    Petrie, S.E.B., J. Macromol. Sci. Phys. 12 (1976) 225Google Scholar
  22. [22]
    Simha, R., J.M. Roe and V.S. Nanda, J. Appl. Phys. 43 (1972) 4312Google Scholar
  23. [23]
    Goldstein, M., Ann. N.Y. Acad. Sci. 279, 68 (1976); J. Chem. Phys. 64 (1976) 4767Google Scholar
  24. [24]
    Johari, G.P., Ann. N.Y. Acad. Sci. 279, 102 (1976); Phil. Mag. 41 (1980) 41Google Scholar
  25. [25]
    Johari, G.P., Phil. Mag. 35 (1977) 1077Google Scholar
  26. [26]
    Suga, H. and S. SEki, Bull. Chem. Soc. Japan 46 (1973) 3020Google Scholar
  27. [27]
    Johari, G.P., J. Chem. Phys. 77 (1982) 4619Google Scholar
  28. [28]
    Stevels, J.M., J. Non Cryst. Solids 40 (1980) 69Google Scholar
  29. [29]
    Haddad, J. and M. Goldstein, J. Noncryst. Solids 30 (1978) 1Google Scholar
  30. [30]
    Johari, G.P., J. Chem. Phys. 58 (1973) 1766Google Scholar
  31. [31]
    Adams, G. and J.H. Gibbs, J. Chem. Phys. 43 (1965) 139Google Scholar
  32. [32]
    Struik, L.C.E., Ann. N.Y. Acad. Sci. 279 (1976) 78Google Scholar
  33. [33]
    Kovacs, A.J., Fortschr. Hochpolym. Forsch. 3 (1963) 394Google Scholar
  34. [34]
    Cavaille, J.Y., S. Etienne, J. Perez, L. Monnerie and G.P. Johari, Polymer 27 (1985) 686Google Scholar
  35. [35]
    Pathmanathan, K., G.P. Johari, J.P. Faivre and L. Monnerie, J. Polymer Sci. (Polymer Phys.) 24 (1986) 1587Google Scholar
  36. [36]
    Stephens, R.B., J. Appl. Phys. 49 (1978) 5855Google Scholar
  37. [37]
    Etienne, S., Thesis, University of Lyon, France, 1986Google Scholar
  38. [38]
    Bouzabata, B., R. Ingalls and K.V. Rao, J. Appl. Phys. 53 (1982) 2324Google Scholar
  39. [39]
    Chen, H.S., R.C. Sherwood, H.J. Leamy and E.M. Georgy, IEEE Trans. Magn. 12 (1976) 933Google Scholar
  40. [40]
    Libermann, H.H., C.D. Grahm and P.J. Flanders, ibid. 13 (1977) 1541Google Scholar
  41. [41]
    Johari, G.P., Polymer 27 (1986) 866Google Scholar
  42. [42]
    Zeller, R.C. and R.O. Pohl, Phys. Rev. B4 (1971) 2029Google Scholar
  43. [43]
    Bernal, J.D., Nature (London) 185, 68 (1960: Proc. Roy. Soc. Lond. A280 (1964) 229. “The Geometry of the Structure of Liquids” in Liquids: Structure, Properties and Solid Interactions. T.J. Hughel, Ed. (Elsevier, 1965) pp. 25Google Scholar
  44. [44]
    Anderson, P.W., B.I. Halperin and C.M. Varma, Phil. Mag. 25 (1972) 1Google Scholar
  45. [45]
    Phillips, W.A., J. Low Temp. Phys. 7 (1972) 351Google Scholar
  46. [46]
    Pohl, R.O., Phase Transitions 5 (1985) 239Google Scholar
  47. [47]
    Frank, M. and H.A. Stuart, Kolloid. Ziet. 225 (1968) 1Google Scholar
  48. [48]
    Guerdoux, L. and E. Marchal, Polymer 22 (1981) 1199Google Scholar
  49. [49]
    Cohen, M.H. and G.S. Grest, Phys. Rev. Lett. 45 (1980) 1271Google Scholar
  50. [50]
    Phillips, J.C., Phys. Rev. B24 (1981) 1744Google Scholar
  51. [51]
    Raychaudhury, A.K. and R.O. Pohl, Solid State Commun. 37 (1980) 105Google Scholar
  52. [52]
    Raychaudhury, A.K. and R.O. Pohl, Phys. Rev. B25 (1982) 1310Google Scholar
  53. [53]
    McDonald, W.C., A.C. Anderson and J. Schroeder, Phys. Rev. B31 (1985) 1090Google Scholar
  54. [54]
    Chang, S.S. and A.B. Bestul, J. Chem. Thermodyn. 6 (1974) 325Google Scholar
  55. [55]
    Lasjaunias, J.C., B. Picot, A. Ravex and M. Vandorpe, The Second Conference of the Condensed Matter Division of the European Physical Society on Dielectrics and Phonons, Budapest, extended abstracts p. 199, 1974Google Scholar
  56. [56]
    Etienne, S., thesis 1986, Université de Lyon, FranceGoogle Scholar
  57. [57]
    Calemczuk, R., Thésé, Docteur des Sciences, L'Université Scientifique et Medicale et L'Institut Nationale Polytechnique de Grenoble, p. 133 (1983)Google Scholar
  58. [58]
    Lasjaunias, J.C., G. Penn, A. Ravex and M. Vandorpe, J. Physique L41 (1980) L131. J. Noncryst. Solids 57 (1983) 157Google Scholar
  59. [59]
    Lasjaunias, J.C., G. Penn and M. Vandorpe in “Phonon Scattering in Condensed Matter”, H.J. Maris, ed. (Plenum, 1980) p. 25Google Scholar
  60. [60]
    Lasjaunias, J.C., A. Ravex, D. Laborde and O. Bethoux, Physica 126B (1984) 126Google Scholar
  61. [61]
    Ravex, A., J.C. Lasjaunias and O. Bethoux, J. Phys. F. Met. Phys. 14 (1984) 329Google Scholar
  62. [62]
    Berman, R., Proc. Roy. Soc. (Lond.) A208 (1951) 90Google Scholar
  63. [63]
    Gardner, J.W. and A.C. Anderson, Phys. Rev. B23 (1981) 474Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • G. P. Johari
    • 1
  1. 1.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations