Advertisement

Application of Adam-Gibbs' theory to thermodynamic recovery and structural relaxation

  • Shiro Matsuoka
  • G. H. Fredrickson
  • G. E. Johnson
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 277)

Abstract

The Vogel-Fulcher equation lnτ ∞ H/R(T-T2), and the WLF equation, lnτ a ∞ −C1(T-To)/ [C2 +(T-To)], can be expressed in the same form. They are known to fit well with relaxation data of liquids in equilibrium. Doolittle's free volume equation,lnτ∞1/f, and Adam-Gibbs's entropy equation,lnτ ∞ C/RTS, can be reduced to the Vogel-Fulcher equation with reasonable assumptions on the temperature dependence of the free volume fraction, f, and/or the configurational entropy, S. However, in predicting the relaxation behavior in the nonequilibrium state, the Adam-Gibbs equation can be shown to be a clearly better theory than the Doolittle equation. Moreover, with the Adam-Gibbs equation, it is shown that the kinetic parameters required to describe physical aging are the same as those necessary to describe dielectric relaxation behavior.

Keywords

Free Volume Polyvinyl Acetate Relaxation Behavior Relaxation Modulus Glassy Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Robertson, R.E., Chem. Phys. 44, No. 10, 3950 (1966)Google Scholar
  2. [2]
    Kovacs, A.J., Fortschr. Hochpolymer. Forsch. 3. 394 (1963)Google Scholar
  3. [3]
    Matsuoka, S., G. Williams, G.E. Johnson, E.W. Anderson, T. Furukawa, Macromolecules 18, 2652 (1985)Google Scholar
  4. [4]
    Williams, G., and D.C. Watts, Trans. Faraday Soc. 66, 80 (1970)Google Scholar
  5. [5]
    Fulcher, G.A., J. Am. Ceram. Soc. 8, 339 (1925)Google Scholar
  6. [6]
    Adam, G., and J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)Google Scholar
  7. [7]
    Kauzmann, W., Chem. Rev. 43, 219 (1948)Google Scholar
  8. [8]
    Gibbs, J.H. and E.A. DiMarzio, J. Chem. Phys. 28, 373 (1958)Google Scholar
  9. [9]
    Doolittle, A.K., J. Appl. Phys. 22, 1471 (1951)Google Scholar
  10. [10]
    Williams, M.L., R.F. Landel, and J.D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955)Google Scholar
  11. [11]
    Cohen, M.H. and D. Turnbull, J. Chem. Phys. 31, 1164 (1959), ibid. 34, 120 (1961)Google Scholar
  12. 12.
    Simha, R., Polymer Eng. and Sci., 20, No. 1, 82 (1980)Google Scholar
  13. 13.
    Matsuoka, S., et al., Polymer Eng. and Sci., 18, No. 14, 1073 (1978)Google Scholar
  14. 14.
    Matsuoka, S., Polymer Eng., and Sci., 21, No. 14, 907 (1981)Google Scholar
  15. 15.
    Hodge, I.M., Macromol. 19, 936 (1986)Google Scholar
  16. 16.
    Fredrickson, G.H. and H.C. Andersen, Phys. Rev. Lett. 53, 1244 (1984)Google Scholar
  17. 17.
    Narayanaswamy, O.S., J. Am. Ceram. Soc. 34. 491 (1971)Google Scholar
  18. 18.
    Moynihan, C.T., et al., Ann. N.Y. Cad. Sci. 279, 15 (1976)Google Scholar
  19. 19.
    Kovacs, A.J., J. Polymer Sci. 30, 131 (1958)Google Scholar
  20. 20.
    Chow, T.S. and W.M. Prest, Jr., J. Appl. Phys. 53 (10), 6568 (1982)Google Scholar
  21. 21.
    Hodge, I.M., Macromol 16, 898 (1983)Google Scholar
  22. 22.
    Mazurin, O.V., J. Non-Cryst. Solids, 25, 130 (1977)Google Scholar
  23. 23.
    Scherer, G.W., J. Am. Ceram. Soc. 67, 504 (1984)Google Scholar
  24. 24.
    Ferry, J.D., “Viscoelastic Properties of Polymers”, Wiley, N.Y., 1970Google Scholar
  25. 25.
    Fredrickson, G.H. and S.A. Brawer, J. Chem. Phys. in pressGoogle Scholar
  26. 26.
    Fredrickson, G.H., Annals N.Y. Acad. of Sci., in pressGoogle Scholar
  27. 27.
    Mashimo, S., R. Nozaki, D. Yagihara, S. Takeishi, J. Chem. Phys. 77 (12), 6259 (1982)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Shiro Matsuoka
    • 1
  • G. H. Fredrickson
    • 1
  • G. E. Johnson
    • 1
  1. 1.AT & T Bell LaboratoriesMurray HillUSA

Personalised recommendations