Models for dynamics of relaxation in glasses

  • A. Blumen
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 277)


Wide classes of disordered materials display relaxations which cannot be expressed in ] terms of a single decay rate. The analysis of experimental data often leads to the Kohlrausch-Williams-Watts stretched exponential exp[-(t/τ)β] or to algebraic time dependences C/tY .In this article, we show how such decay patterns may arise from quite different microscopic dynamics. Possible candidates for modelling disorder are (a) self-similar spatial distributions of sites (fractal geometries), (b) distributions of waiting times and (c) self-similar distributions of energy barriers (ultrametric spaces). For each of these models one may obtain under certain conditions stretched exponential or algebraic decays, although the microscopic relaxation dynamics differ in every case.


Glassy State Regular Lattice Distinct Site Ultrametric Space Microscopic Dynamic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Williams and D.C. Watts, Trans. Faraday Soc. 66, 80 (1970)Google Scholar
  2. [2]
    G. Williams, Adv. Polym. Sci. 33, 59 (1979)Google Scholar
  3. [3]
    A.K. Jonscher, Nature 267, 673 (1977)Google Scholar
  4. [4]
    K.L. Ngai, Comments Solid State Phys. 9, 127 (1979); 9, 141 (1980)Google Scholar
  5. [5]
    See “Relaxation in Complex Systems”, K.L. Ngai and G.B. Wright eds. (Natl. Techn. Inform. Service, U.S. Govt. Printing Office, 1985)Google Scholar
  6. [6]
    A.A. Jones, J.F. O'Gara, P.T. Inglefield, J.T. Bendler, A.F. Yee and K.L. Ngai, Macromolec. 16, 658 (1983)Google Scholar
  7. [7]
    G.D. Patterson, Adv. Polym. Sci. 48, 125 (1983)Google Scholar
  8. [8]
    G. Fytas, Th. Dorfmüller and C.H. Wang, J. Phys. Chem. 87, 5041 (1983)Google Scholar
  9. [9]
    G. Fytas, A. Patkowski, G. Meier and Th. Dorfmüller, J. Chem. Phys. 80, 2214 (1984), see also the contribution of G. Meier in this volumeGoogle Scholar
  10. [9a]
    G. Fytas, C.H. Wang, G. Meier and E.W. Fischer, Macromolecules 18, 1492 (1985)Google Scholar
  11. [9b]
    G. Meier, G. Fytas and Th. Dorfmüller, Macromolecules 17, 952 (1984)Google Scholar
  12. [10]
    R. Richert and H. Bässler, Chem. Phys. Lett. 118, 235 (1985)Google Scholar
  13. [11]
    V.L. Vyazovkin, B.V. Bol'shakov and V.A. Tolkatchev, Chem. Phys. 75, 11 (1983)Google Scholar
  14. [12]
    J.R. Miller, Chem. Phys. Lett. 22, 180 (1973)Google Scholar
  15. [13]
    J.V. Beitz and J.R. Miller, J. Chem. Phys. 71, 4579 (1979)Google Scholar
  16. [14]
    J. Friedrich and D. Haarer, Angew. Chemie, Int. Engl. Ed. 23, 113 (1984)Google Scholar
  17. [15]
    J. Friedrich and A. Blumen, Phys. Rev. B32, 1434 (1985)Google Scholar
  18. [16]
    J. Tauc, Semicond. and Semimetals 21B, 299 (1984)Google Scholar
  19. [17]
    H. Scher and E.W. Montroll, Phys. Rev. B7, 4502 (1973)Google Scholar
  20. [18]
    G. Pfister and H. Scher, Adv. Phys. 27, 747 (1978)Google Scholar
  21. [19]
    R.G. Palmer, D.L. Stein, E. Abrahams and P.W. Anderson, Phys. Rev. Lett. 53, 958 (1984)Google Scholar
  22. [20]
    A. Blumen, Nuovo Cimento B63, 50 (1981)Google Scholar
  23. [21]
    B.B. Mandelbrot, “The Fractal Geometry of Nature”, W.H. Freeman and Co., San Francisco (1982)Google Scholar
  24. [22]
    K.J. Falconer, “The Geometry of Fractal Sets”, Cambridge Univ. Press (1985)Google Scholar
  25. [23]
    H. Scher and M. Lax, Phys. Rev. B7, 4491; 4502 (1973)Google Scholar
  26. [24]
    N. Bourbaki, “Eléments de mathématique, Topologie générale”, Chap. IX, CCLS, Paris (1974)Google Scholar
  27. [25]
    W.H. Schikhof, “Ultrametric Calculus”, Cambridge Univ. Press (1984)Google Scholar
  28. [26]
    G. Zumofen, A. Blumen and J. Klafter, J. Chem. Phys. 82, 3198 (1985)Google Scholar
  29. [27]
    A. Blumen, J. Klafter and G. Zumofen, “Models for Reaction Dynamics in Glasses”, in: “Optical Spectroscopy of Glasses”, I. Zschokke-Gränacher ed., Reidel, Dordrecht, Holland (1986) p. 199Google Scholar
  30. [28]
    E.A. DiMarzio, “Equilibrium Theory of Glasses”, in “Structure and Mobility in Molecular and Atomic Glasses”, J.M. O'Reilly and M. Goldstein eds., Ann. N.Y. Acad. Sci. 371, 1 (1981)Google Scholar
  31. [29]
    C.A. Angell, Ann. N.Y. Acad. Sci. 371, 136 (1981)Google Scholar
  32. [30]
    L.V. Woodcock, Ann. N.Y. Acad. Sci. 371, 274 (1981)Google Scholar
  33. [31]
    C.A. Angell, J.H.R. Clarke and L.V. Woodcock, Ann. Rev. Phys. Chem. 48, 397 (1981)Google Scholar
  34. [32]
    S.H. Glarum, J. Chem. Phys. 33, 1371 (1960)Google Scholar
  35. [33]
    M.F. Shlesinger and E.W. Montroli, Proc. Natl. Acad. Sci. USA 81, 1280 (1984)Google Scholar
  36. [34]
    J.T. Bendler and M.F. Shlesinger, in: “Relaxation in Complex Systems”, Ref. [5], p. 261Google Scholar
  37. [35]
    G. Zumofen and A. Blumen, Chem. Phys. Lett. 88, 63 (1982)Google Scholar
  38. [36]
    G.H. Weiss and R.J. Rubin, Adv. Chem. Phys. 52, 363 (1983)Google Scholar
  39. [37]
    J. Klafter, A. Blumen and G. Zumofen, J. Stat. Phys. 36, 561 (1984)Google Scholar
  40. [38]
    S. Redner and K. Kang, J. Phys. A17, L 451 (1984)Google Scholar
  41. [39]
    A. Blumen, G. Zumofen and J. Klafter, Phys. Rev. B30, 5379 (1984)Google Scholar
  42. [40]
    A. Blumen, J. Klafter and G. Zumofen, in: “Transport and Relaxation Processes in Random Materials”, J. Klafter et al. eds., World Scientific, Singapore (1986)Google Scholar
  43. [41]
    F. Family and D.P. Landau eds., “Kinetics of Aggregation and Gelation”, North-Holland, Amsterdam (1984)Google Scholar
  44. [42]
    R. Hilfer and A. Blumen, J. Phys. A17, L 537 (1984)Google Scholar
  45. [43]
    R. Hilfer and A. Blumen, J. Phys. A17, L 783 (1984)Google Scholar
  46. [44]
    S. Alexander and R. Orbach, J. Physique Lett. 43, L 625 (1982)Google Scholar
  47. [45]
    E.W. Montroll and G.H. Weiss, J. Math. Phys. 6, 167 (1965)Google Scholar
  48. [46]
    A. Blumen, J. Klafter, B.S. White and G. Zumofen, Phys. Rev. Lett. 53, 1301 (1984) (Google Scholar
  49. [47]
    P.W. Anderson, in “Ill-Condensed Matter”, R. Balian, R. Maynard and G. Toulouse eds., North-Holland, Amsterdam (1979) p. 162Google Scholar
  50. [48]
    J. Jäckle, in: “Amorphous Solids”, W.A. Phillips ed., Topics in Current Phys. 24, 135 (1985) Springer Verlag, Berlin, and Reports on Progress in Physics (1986), to be publishedGoogle Scholar
  51. [49]
    V. Rosato and G. Williams, Adv. Molec. Relax. and Interact. Processes 20, 233 (1981)Google Scholar
  52. [50]
    G.P. Johari, in: “Plastic Deformation of Amorphous and Semicrystalline Materials”, Les-Houches Lectures (Editions de Physique, 1982)Google Scholar
  53. [51]
    A.D. Gordon, “Classification”, Chapman and Hall, London (1981)Google Scholar
  54. [52]
    A. Blumen, J. Klafter and G. Zumofen, J. Phys. A19, L 77 (1986)Google Scholar
  55. [53]
    B.A. Huberman and M. Kerszberg, J. Phys. A18, L 331 (1985)Google Scholar
  56. [54]
    A.T. Ogielski and D.L. Stein, Phys. Rev. Lett. 55, 1634 (1985)Google Scholar
  57. [55]
    S. Grossmann, F. Wegner and K.H. Hoffmann, J. Physique Lett. 46, L 575 (1985)Google Scholar
  58. [56]
    P.D. deGennes, Compt. Rendus Acad. Sci. (Paris), Sér. II, 296, 881 (1983)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • A. Blumen
    • 1
    • 2
  1. 1.Max-Planck Institut für PolymerforschungMainz
  2. 2.Physikalisches Institut der UniversitätBayreuthGermany

Personalised recommendations