Advertisement

Mathematical structures and their morphisms in Meta-IV

  • Mícheál Mac an Airchinnigh
Foundations II
Part of the Lecture Notes in Computer Science book series (LNCS, volume 252)

Keywords

Data Type Binary Operation Mathematical Structure Symmetric Difference Boolean Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11. References

  1. Arbib, Michael A. and Manes, Ernest G., Arrows, Structures, and Functors, The Categorical Imperative, Academic Press, Inc., New York San Francisco London, 1975.Google Scholar
  2. Backus, John., Can Programming be Liberated from the von Neumann Style? A Functional Style and its Algebra of Programs, Comm. of the ACM, Vol.21(8), 1978.Google Scholar
  3. Bjoerner, D. and Jones, C.B. (eds), The Vienna Development Method: The Meta-Language, Lecture Notes in Computer Science, Vol.61, Springer-Verlag, Berlin Heidelberg New York, 1978.Google Scholar
  4. Bjoerner, Dines and Jones, Cliff B., Formal Specification and Software Development, Prentice / Hall International, Englewood Cliffs, New Jersey London New Delhi Singapore Sydney Tokyo Toronto Wellington, 1982.Google Scholar
  5. Clark, K.L. and McCabe, F.G., micro-PROLOG; Programming in Logic, Prentice / Hall International, Englewood Cliffs, New Jersey London New Delhi Rio de Janeiro Singapore Sydney Tokyo Toronto Wellington, 1984.Google Scholar
  6. Davis, Philip J. and Hersh, Reuben., The Mathematical Experience, Birkhauser, Boston, 1981, Pelican Books, 1983.Google Scholar
  7. Eilenberg, Samuel., Automata, Languages, and Machines, Vol.A, Academic Press, New York London, 1974.Google Scholar
  8. Godemont, Roger., Algebra, Kershaw Publishing Company Ltd., London, 1969.Google Scholar
  9. Gotlieb, C.C. and Gotlieb, Leo R., Data Types and Structures, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1978.Google Scholar
  10. Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall International, Englewood Cliffs, New Jersey London Mexico New Delhi Rio de Janiero Singapore Sydney Tokyo Toronto Wellington, 1985.Google Scholar
  11. Hopcroft, John E. and Ullman, Jeffrey D., Introduction to Automata Theory, Languages, and Computation, Addison-Wesley Publishing Company, Reading, Masachussetts Menlo Park, California London Amsterdam Don Mills, Ontario Sydney, 1979.Google Scholar
  12. Iverson, Kenneth E., Notation as a Tool of Thought, Comm. of the ACM, Vol.23(8), 1980.Google Scholar
  13. Mac an Airchinnigh, Mícheál., Conceptual Models and Computing — Theory and Practice, Ph.D. Thesis, The University of Dublin, Trinity College, Dublin, 1987.Google Scholar
  14. MacLane, S. and Birkhoff G., Algebra, Second Edition, MacMillan Publishing Co., Inc., New York, Collier MacMillan Publishers, London, 1979.Google Scholar
  15. Sharir, Micha., Some Observations Concerning Formal Differentiation of Set Theoretic Expressions, ACM Trans. on Prog. Lang. and Systems, Vol.4 (2), 1982, pp. 196–225.Google Scholar
  16. Stoy, Joseph E., Foundations of Denotational Semantics, in: Bjoerner, D. (ed), Abstract Software Specifications, Lecture Notes in Computer Science, Vol.86, Springer-Verlag, Berlin Heidelberg New York, 1980, pp. 43–99.Google Scholar
  17. Stoy, Joseph E., Mathematical Foundations, in: Bjoerner, Dines and Jones, Cliff B., Formal Specification and Software Development, Prentice/Hall International, Englewood Cliffs, New Jersey London New Delhi Singapore Sydney Tokyo Toronto Wellington, 1982, pp.47–81.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Mícheál Mac an Airchinnigh
    • 1
  1. 1.Department of Computer ScienceUniversity of Dublin, Trinity CollegeDublinIreland

Personalised recommendations