Dilation analytic methods

  • Heinz K. H. Siedentop
Part VI - Other Applications of Scattering Theory Methods
Part of the Lecture Notes in Physics book series (LNP, volume 273)


Complex scaling and some of its variants are reviewed. Bounds on resonances (energy and lifetimes) are derived by combining the complex scaling methods with a variational principle for the multiplicity of eigenvalues and a generalization of Rouché's theorem for meromorphic functions with values in some trace ideal. — The method is illustrated with a particular simple example, a particle in a well.


Essential Spectrum Finite Rank Trace Ideal Particle Case Complex Scaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Aguilar, J. M. Combes: A class of analytic pertubations for one-body Schrödinger operators. Commun. Math. Phys. 22 (1971) 269–279Google Scholar
  2. [2]
    E. Balslev, J. M. Combes: Spectral properties of many-body Schrödinger operators with dilation analytic interactions. Commun. Math. Phys. 22 (1971) 280–294Google Scholar
  3. [3]
    C. van Winter: Complex dynamical variables for multiparticle systems with analytic interaction I. J. Math. Anal. Appl. 47 (1974) 633–670Google Scholar
  4. [4]
    C. van Winter: Complex dynamical variables for multiparticle systems with analytic interaction II. J. Math. Anal. Appl. 48 (1974) 368–399Google Scholar
  5. [5]
    M. Reed, B. Simon: Methods of modern mathematical physics IV. Analysis of operators. Academic press, New York 1978Google Scholar
  6. [6]
    B. Simon: The definition of molecular resonance curves by the method of exterior complex scaling. Phys. Lett. 71 A (1979) 211–214Google Scholar
  7. [7]
    I. W. Herbst: Schrödinger operators with external homogenous electric and magnetic fields. In: G. Velo, A. S. Wightman (eds.). Rigorous atomic and molecular physics. Plenum Press, New York 1981Google Scholar
  8. [8]
    V. S. Graffi, K. Yajima: Exterior complex scaling and the AC-Stark effect in a Coulomb field. Commun. Math. Phys. 89 (1983) 277–301Google Scholar
  9. [9]
    J. M. Combes, P. Duclos, M. Klein, R. Seiler: The shape resonance. To appear in Anal. Inst. H. Poincaré. Preprint 1986Google Scholar
  10. [10]
    P. D. Hislop, J. M. Sigal: Shape resonances in quantum mechanics. For the Proceedings of the Int. Conf. on Diff. Equ. and Math. Physics, Birmingham, Alabama 1986. Preprint 1986Google Scholar
  11. [11]
    E. Balslev: Analytic scattering theory of two-body Schrödinger operators. J. Funct. Analysis 29, (1978) 375–396Google Scholar
  12. [12]
    H. L. Cycon: Resonances defined by modified dilations. Helv. Phys. Acta 58 (1985) 969–981Google Scholar
  13. [13]
    W. Hunziker: Distortion analyticity and molecular resonance curves. Preprint 1986Google Scholar
  14. [14]
    I. M. Sigal: Complex transformation method and resonances in one-body quantum systems. Ann. Inst. Henri Poincaré. Phys. Théor. 41 (1984) 103–114Google Scholar
  15. [15]
    W. P. Reinhardt: Complex coordinates in the theory of atomic and molecular structure and dynamics. Ann. Rev. Phys. Chem. 33 (1982) 223–255Google Scholar
  16. [16]
    B. R. Junker: Recent computational developments in the use of complex scaling in resonance phenomena. Advances in atomic and molecular physics 18 (1982) 207–263Google Scholar
  17. [17]
    J. K. Ho: The method of complex coordinate rotation and its applications to atomic collision processes. Physics Reports 99 (1983) 1–68Google Scholar
  18. [18]
    K. Yosida: Functional analysis. 6th edition, Springer-Verlag, Berlin 1980Google Scholar
  19. [19]
    N. Moiseyev: Resonances by the complex coordinate method with hermitian hamiltonian. Chem. Phys. Lett. 99 (1983) 364Google Scholar
  20. [20]
    E. Engdahl, E. Brändas: Resonance regions determined by projection operator formulation. Preprint 1986Google Scholar
  21. [21]
    H. K. H. Siedentop: Bound on resonance eigenvalues of Schrödinger operators. Phys. Rev. Lett. 99A (1983) 65–68Google Scholar
  22. [22]
    H. K. H. Siedentop: On the width of resonances. Z. Phys. A 316 (1984) 367–369Google Scholar
  23. [23]
    H. K. H. Siedentop: On a generalization of Rouché's theorem for trace ideals with applications for resonances of Schrödinger operators. To appear, J. Math. Analysis Applic.Google Scholar
  24. [24]
    H. K. H. Siedentop: On the localization of resonances. To appear in Int. Joum. Quantum ChemistryGoogle Scholar
  25. [25]
    V. Weisskopf, E. P. Wigner: Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie, Z. Phys. 63 (1930) 54–73Google Scholar
  26. [26]
    J. R. Taylor: Scattering Theory: The quantum theory of nonrelativistic collisions. John Wiley & Sons, Inc. New York 1972Google Scholar
  27. [27]
    J. Schwinger: Field theory of unstable particles, Ann. Phys. 9 (1960) 169–193Google Scholar
  28. [28]
    C. Lovelace: Scottish Universities' Summer School (R. C. Moorhouse, ed.), Oliver and Boyd, Edinburgh 1963Google Scholar
  29. [29]
    G. A. Hagedorn: Asymptotic completness for a class of four particle Schrödinger operators. Bull. Am. Math. Soc. 84 (1978) 155–156Google Scholar
  30. [30]
    G. A. Hagedorn: A link between scattering resonances and dilation analytic resonances in few body quantum mechanics. Commun. Math. Phys. 65 (1979) 181–188Google Scholar
  31. [31]
    B. Helffer, J. Sjöstrand: Resonances en limite semiclassique. To appear in Bull. de la Soc. Math. Fran.Google Scholar
  32. [32]
    B. Simon: Quadratic form techniques and the Balslev-Combes theorem. Commun. Math. Phys. 27, (1972) 1–9Google Scholar
  33. [33]
    B. Simon: Quantum mechanics for hamiltonians defined as quadratic forms. Princeton University Press, Princeton 1971Google Scholar
  34. [34]
    A. Grossmann, T. T. Wu: Schrödinger scattering amplitude. I. Journ. Math. Phys. 2 (1961) 710–713Google Scholar
  35. [35]
    A. Grossmann, T. T. Wu: Schrödinger scattering amplitude. III. Math. Phys. 3 (1962) 684–689Google Scholar
  36. [36]
    H. K. H. Siedentop: Localization of discrete spectrum of multiparticle Schrödinger operators. Z. Naturforsch. 40a (1985) 1052–1058Google Scholar
  37. [37]
    P. Federbush: Existence of spurious solutions to many body Bethe-Salpeter equations. Phys. Rev. 148 (1966) 1551–1552Google Scholar
  38. [38]
    R. Newton: Spurious solutions of three particle equations. Phys. Rev. 153 (1967) 1502Google Scholar
  39. [39]
    E. Balslev, E. Skibsted: Boundedness of two and three-body resonances. Ann. Inst. Henri Poincaré 43 (1985) 369–397Google Scholar
  40. [40]
    H. K. H. Siedentop: Dimension of eigenspaces of Schrödinger operators — local BirmanSchwinger bound. Rep. Math. Phys. 21 (1985) 383–389Google Scholar
  41. [41]
    A. M. K. Müller: Variation principle for probability amplitudes. Phys. Lett. 11 (1964) 238–239Google Scholar
  42. [42]
    M. Ribaric, I. Vidav: Analytic properties of the inverse A(z)−1 of an analytic linear operator-valued function A(z). Arch. Rational Mech. Anal. 32 (1969) 298–310Google Scholar
  43. [43]
    B. Simon: Trace ideals and their applications. London Mathematical Society. Lecture Notes 35. Cambridge University Press. Cambridge 1979Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Heinz K. H. Siedentop
    • 1
  1. 1.Institut für Mathematische PhysikTechnische Universität Carolo- WilhelminaBraunschweigGermany

Personalised recommendations