Charged-particle interactions in few-body systems

  • L. P. Kok
Part V - Few-Body Systems with Charged Particles and Calculation of Electromagnetic Observables
Part of the Lecture Notes in Physics book series (LNP, volume 273)


Scattering Theory Renormalization Factor Screen Coulomb Potential Breakup Threshold Pure Coulomb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguiar C.E.M., Brinati J.R., and Martins M.H.P. (1986) Elastic scattering of deuteron in a three-body system with Coulomb interaction. Rio de Janeiro preprint.Google Scholar
  2. Alt E.O. (1986) The Coulomb force in few body reactions. In “Few-body methods”, Ed. by T.K. Lim et al. World Scientific, Singapore.Google Scholar
  3. Alt E.O. (1986) Calculation of proton-deuteron scattering observables in the screeening approach, and comparison with approximate treatments. Mainz Prepr. MZ-TH/86-15, Sept.Google Scholar
  4. Alt E.O., Grassberger P., and Sandhas W. (1967) Nucl. Phys. B 2:167.Google Scholar
  5. Alt E.O., Sandhas W., and Ziegelmann H. (1978) Coulomb effects in three-body reactions with two charged particles. Phys. Rev. C 17:1981–2005.Google Scholar
  6. Alt E.O., Sandhas W., and Ziegelmann H. (1985) Calculation of proton-deuteron phase parameters including the Coulomb force. Nucl. Phys. A 445:429–461.Google Scholar
  7. Amado R.D. and Adhikari S.K. (1972) Phys. Lett. B 40:11; (1972) Phys. Rev. C 6:1484.Google Scholar
  8. Amado R.D. and Noble J.V. (1971) Phys. Lett. B 35:25; (1972) Phys. Rev. D 5:1992.Google Scholar
  9. Badalyan A.M., Kok L.P., Polikarpov M.I., and Simonov Yu.A. (1982) Resonances in coupled channels in nuclear and particle physics. Phys. Rep. 82:31–177.Google Scholar
  10. Baltar V.L., Ferreira E.M., and Antunes A.C. (1976) Nucl. Phys. A 265:365.Google Scholar
  11. Balmer (1885) Wied. Ann. 25.Google Scholar
  12. Bencze G. and Chandler C. (1985) Coulomb polarization effects in low energy p-d elastic scattering. Albuquerque preprint.Google Scholar
  13. Bencze G., Chandler C, Friar J.L., Gibson A.G, and Payne G.L. (1986) Low energy scattering theory for Coulomb plus long-range potentials. Albuquerque preprint.Google Scholar
  14. Burke P.G. (1977) Potential scattering in atomic physics. Plenum Press, New York.Google Scholar
  15. Cajori F. (1946) Newton's Principia. Motte's translation revisited. University of California Press, Berkeley.Google Scholar
  16. Chandler C. (1986) The Coulomb problem in nonrelativistic scattering theory. In Proceedings Few-Body XI, Tokyo-Sendai.Google Scholar
  17. Cornille H. and Martin A. (1962) Nuovo Cim. 26:298–327.Google Scholar
  18. Coulomb C.A. (1785,1787) Memoires de l'Academie Royale des Sciences de l'Institut Imperiale de France. Paris, 1788, pp. 569–577,578–611.Google Scholar
  19. De Alfaro V. and Regge T. (1965) Potential Scattering. Wiley, New York.Google Scholar
  20. de Maag J.W. et al. (1984) Coulomb-modified scattering parameters for Coulomb-plusseparable potentials for all 1. J. Math. Phys. 25:684–692.Google Scholar
  21. Dollard J.D. (1964) J. Math. Phys. 5:729 and (1966) 7:802.Google Scholar
  22. Dollard J.D. (1971) Rocky Mtn. J. Math. 1:5 and (1972) 2:317.Google Scholar
  23. Dusek J. (1982) Czech. J. Phys. B 32:1325–1348 and (1983) J. Math. Phys. 24:2471-2480.Google Scholar
  24. Efimov V. (1970) Phys. Lett. B 33:563.Google Scholar
  25. Enns V. (1979) Comm. Math. Phys. 65:151.Google Scholar
  26. Faddeev L.D. (1969) In Three body problem. Ed. by J.S.C. McKee et al. NHPC, Amsterdam.Google Scholar
  27. Feynman R.P. (1985) “Surely You're Joking, Mr. Feynman!”. Norton & Co., New York.Google Scholar
  28. Gibson A.G. (1985) On low energy scattering theory with Coulomb potentials. Budapest preprint KFKI-1985-79.Google Scholar
  29. Gillmor C.S. (1971) Coulomb and the evolution of physics and engineering in eighteenthcentury France. Princeton University Press, Princeton. See part. pp. 182, 193, 232.Google Scholar
  30. Goodmanson D.M. and Taylor J.R. (1980)Coulomb scattering as the limit of scattering off smoothly screened Coulomb potentials. J. Math. Phys. 21:2202–2207.Google Scholar
  31. Gorshkov V.G. (1961) Zh. Eksp. Teor. Fiz. 40:1481–1491.Google Scholar
  32. Gradshteyn I.S. and Ryzhik I.M. (1980) Table of integrals, series, and products, corrected and enlarged edition. Academic Press, New York.Google Scholar
  33. Hamilton J. et al. (1973) Nucl. Phys. B60:443.Google Scholar
  34. Hormander L. (1976) The existence of wave operators in scattering theory. Math. Z. 146:69–91.Google Scholar
  35. Isozaki H. and Kitada H. (1985) J. Fac. Sci. Univ. Tokyo, Sec. IA, Math. 32:77.Google Scholar
  36. Kharchenko V.F. and Shadchin S.A. (1983) Kiev, preprint ITP-83-101E.Google Scholar
  37. Klaus M. and Simon B. (1980) Coupling constant thresholds in nonrelativistic quantum mechanics I. Short-range two-body case. Ann. Phys. (N.Y.) 130:251–281. (1980) II. Two-cluster thresholds in n-body systems. Commun. Math. Phys. 78:153-168.Google Scholar
  38. Koch J.H. et al. (1971) Phys.Rev. Lett. 26:1465.Google Scholar
  39. Kok L.P. (1980) Accurate determination of the ground-state level of the 2He nucleus. Phys. Rev. Lett. 45:427–430.Google Scholar
  40. Kok L.P. (1980) Coulomb level shifts by a complex Yamaguchi potential. Phys. Rev. C 22:2404–2408.Google Scholar
  41. L.P. Kok (1985) Few-body problem with Coulomb interactions. In Few-Body problems in Physics. Ed. by L.D. Faddeev et al. World Scientific, Singapore.Google Scholar
  42. Kok L.P., Struik D.J., and van Haeringen H. (1979) On the exact solution of threeparticle equations with Coulomb interaction I. The driving terms. Report 151, University of Groningen, 40 p. Available upon request.Google Scholar
  43. Kok L.P., Struik D.J., Holwerda J.E., and van Haeringen H. (1981) On the exact solution of three-particle equations with Coulomb interaction II. Bound states. Report 170, University of Groningen, 48 p. Available upon request.Google Scholar
  44. Kok L.P. and van Haeringen H. (1980) Off-shell Coulomb T matrix in connection with the exact solution of three-particle equations with Coulomb interaction. Phys. Rev. C 21:512–517.Google Scholar
  45. Kok L.P. and van Haeringen H. (1982) Bound state solution in momentum space of threeparticle equations with Coulomb interaction. Czech. J. Phys. B 32:311–315.Google Scholar
  46. Kostelecky V.A. and Nieto M.M. (1985) Analytical wave functions for atomic quantumdefect theory. Phys. Rev. A 32:3243–3246.Google Scholar
  47. Krell, M. (1971) Phys. Rev. Lett. 26:584.Google Scholar
  48. Kroeger H., Nachabe A.M., and Slobodrian R.J. (1986) Phys. Rev. C 33:1208.Google Scholar
  49. Kroeger H. and Slobodrian R.J. (1984) Phys. Rev. C 30:1390.Google Scholar
  50. Kuperin Yu.A., Kvitsinsky A.A., and Merkuriev S.P. (1985) Low energy scattering of three charged particles. Barcelona preprint FT-FP-5-85.Google Scholar
  51. Kuzmichev V.E. and Zepelova M.L. (1985) in Proc. Eur. Few-Body X (CRIP, Budapest) 91–93.Google Scholar
  52. Kvitsinskii A.A., Komarov I.V., and Merkuriev S.P. (1983) Singularities of the scattering amplitude for slowly decreasing potentials. Yad. Fiz. 38:101–114.Google Scholar
  53. Kvitsinskii A.A. and Merkuriev S.P. (1985) In Few-Body problems in Physics. Ed. by L.D. Faddeev et al. World Scientific, Singapore.Google Scholar
  54. Kvitsinsky A.A. and Merkuriev S.P. (1985) Polarization potential and low-energy characteristics of pd scattering. Yad. Fiz. 41:647–654.Google Scholar
  55. Kvitsinsky A.A. (1985) Low energy scattering for potentials including power-type terms in addition to the Coulomb interaction. Teor. Mat. Fiz. 65:226–237.Google Scholar
  56. Laverne A. and Cignoux C. (1973) Nucl. Phys. A 203:597.Google Scholar
  57. Lehman D.R., Eskandarian A., Gibson B.F., and Maximon L.C. (1984) Momentum-space solution of a bound-state nuclear three-body problem with two charged particles. Phys. Rev. C 29:1450–1460.Google Scholar
  58. McVoy K.W. (1967) Collision theory. In Fundamentals in nuclear theory. Ed. by A. DeShalit and C. Villi. IAEA, Vienna.Google Scholar
  59. Merkuriev S.P. (1980) Ann. Phys. (N.Y.) 130:395.Google Scholar
  60. Merkuriev S.P. (1981) Three-body Coulomb scattering. Acta Phys. Austriaca Suppl. 23:65–110.Google Scholar
  61. Mitra A.N. (1962) Nucl. Phys. 32:529.Google Scholar
  62. Moeller K. (1977,1978) Z.f.K. Dresden, Internal reports 327,351,357,377.Google Scholar
  63. Motte A. (1729) Sir Isaac Newton's Mathematical Principles of Natural Philosophy and his system of the world. [Translation from Latin into English of the third edition (1726) of Newton (1687).]Google Scholar
  64. Mulherin D. and Zinnes I.I. (1970) J. Math. Phys. 11:1402.Google Scholar
  65. Newton I.S. (1687) Philosophiae Naturalis Principia Mathematica. Printed by J. Streater, for the Royal Society, London.Google Scholar
  66. Newton R.G. (1982) Scattering Theory of Waves and Particles. 2nd Ed. Springer, New York.Google Scholar
  67. Noyes H.P. (1970) In Three body problem. Ed. by J.S.C. McKee et al. NHPC, Amsterdam.Google Scholar
  68. Nussenzweig H.M. (1959) The poles of the S-matrix of a rectangular potential well or barrier. Nucl. Phys. 11, 499–521.Google Scholar
  69. Okubo S. and Feldman D. (1960) Phys. Rev. 117:279–291;292-306.Google Scholar
  70. O'Malley T.F. et al. (1961) Modification of effective-range theory in the presence of a long-range (r-4) potential. J. Math. Phys. 2:491–498.Google Scholar
  71. Oppenheim Berger R. and Spruch L. (1965) Phys. Rev. 138:B1106–B1115.Google Scholar
  72. Pauli W. (1926) Z. Phys. 36:336–363.Google Scholar
  73. Payne G.L. et al. (1980) Phys. Rev. C 22:823–831;832-841.Google Scholar
  74. Reed M. and Simon B. (1972) Methods of Modern Mathematical Physics. Academic Press, New York. Vol. I: Functional Analysis. (1975) Vol. II: Fourier Analysis, Self-Adjointness (1978) Vol. IV: Analysis of Operators. (1979) Vol. III: Scattering Theory.Google Scholar
  75. Schroedinger E. (1926) Ann. Phys. (Leipzig) 79:361–376;489-527;734-756, 80:437-490, 81:109-139.Google Scholar
  76. Schwinger W. et al. (1983) Phys. Rev. C 27:515–522; 28:1414-1416.Google Scholar
  77. Schwinger J. (1964) Coulomb Green's function. J. Math, Phys. 5:1606–1608.Google Scholar
  78. Seaton M.J. (1955) Comp. Rend. 240:1317; (1958) Mon. Not., R. Astron. Soc. 118:504.Google Scholar
  79. Seaton M.J. (1983) Rep. Progr. Phys. 46:167.Google Scholar
  80. Simon B. (1970) On the infinitude or finiteness of the number of bound states of an Nbody quantum system, I. Helv. Phys. Acta 43:607–630.Google Scholar
  81. Simon B. (1976) On the number of bound states of two-body Schroedinger operators-a review. In Studies in Mathematical Physics. Ed. by E.H. Lieb et al. Princeton University Press, Princeton, pp. 305-326.Google Scholar
  82. Stelbovics A.T. and Dodd L.R. (1972) Phys. Lett. 39:450.Google Scholar
  83. Taluktar B. et al. (1984) J. Math. Phys. 24:683–686.Google Scholar
  84. Taylor J.R. (1972) Scattering theory. Wiley, New York.Google Scholar
  85. Taylor J.R. (1974) A new rigorous approach to Coulomb scattering. Nuovo Cim. B23:313–34.Google Scholar
  86. van Haeringen, H. (1978) J. Math. Phys. 19:1379–1380.Google Scholar
  87. van Haeringen, H. (1985) Charged-Particle Interactions. Theory and Formulas. Coulomb Press Leyden, Leiden.Google Scholar
  88. van Haeringen H. and Kok L.P. (1981) Exact phase shifts and scattering parameters for Coulomb plus simple separable potentials for all 1. Phys. Lett. A 82 (1981) 317–320.Google Scholar
  89. van Haeringen H. and Kok L.P. (1982) Modified effective-range function. Phys Rev. A 26:1218–1225.Google Scholar
  90. van Haeringen H., van der Mee C.V.M., and van Wageningen, R. (1977) The number of bound states for the Coulomb plus Yamaguchi potential. J. Math. Phys. 18:941–943.Google Scholar
  91. van Haeringen, H. and van Wageningen, R. (1975) J. Math. Phys. 16:1441–1452.Google Scholar
  92. Venema M. (1980) Het Efimov effekt in Amado's model (in Dutch). Report 163, University of Groningen, 79 p. Available upon request.Google Scholar
  93. Veselova A.M. (1970) Separation of two-particle Coulomb singularities in a system of three charged particles. Teor. Mat. Fiz. 3:542–546.Google Scholar
  94. Veselova A.M. (1973) Preprint ITF-73-106P. Kiev.Google Scholar
  95. Veselova A.M. (1978) Teor. Mat. Fiz. 35:395.Google Scholar
  96. Veselova A.M. and Faddeev L.D. (1981) Vestnik LGU Ser. Fiz. 22:42–46.Google Scholar
  97. Wentzel G. (1926) Zwei Bemerkungen ueber die Zerstreuung korpuskularer Sthralen als Beugungserscheinung. Z. Phys. 40:590–593.Google Scholar
  98. Yamaguchi Y. (1954) Phys. Rev. 95:1628–1634.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • L. P. Kok
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of GroningenAV GroningenNetherlands

Personalised recommendations