Extended space distribution sensitive self-consistent schemes

  • Andre Zaoui
Part VI Approximate Statistical Modelling and Applications
Part of the Lecture Notes in Physics book series (LNP, volume 272)


Rigid Inclusion Coherent Potential Approximation Composite Sphere Junction Hardening Local Strain Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    TAYLOR, G.I., The mechanism of plastic deformation of crystals, Proc. Roy. Soc. London, A 145, 362, 1934.Google Scholar
  2. 2.
    FRANCIOSI, P., BERVEILLER, M. and ZAOUI, A., Latent hardening in copper and aluminium single crystals, Acta Metall. 28, 273, 1980.Google Scholar
  3. 3.
    MANDEL, J., Generalisation de la théorie de plasticite de W.T. Koiter, Int. J. Solids Structures, 1, 273, 1965.Google Scholar
  4. 4.
    HILL, R., Generalized constitutive relations for incremental deformation of metal crystals by multislip, J. Mech. Phys. Solids, 14, 95, 1966.Google Scholar
  5. 5.
    FRANCIOSI, P. and ZAOUI, A., Multislip tests on copper crystals: a junction hardening effect, Acta Metall., 30, 2141, 1982.Google Scholar
  6. 6.
    ZAOUI, A., Aspects fondamentaux de la plasticité des polycristaux métalliques, Dislocations et deformation plastique, P. Groh, L.P. Kubin and J.L. Martin Ed., les Editions de physique, Paris, 1979.Google Scholar
  7. 7.
    MUSSOT, P., REY, C. and ZAOUI, A., Grain boundary sliding and strain compatibility, Res Mech., 14, 69, 1985.Google Scholar
  8. 8.
    REY, C. and ZAOUI, A., Slip heterogeneities in deformed aluminium bicrystals, Acta Metall., 28, 687, 1980.Google Scholar
  9. 9.
    REY, C. and ZAOUI, A., Grain boundary effects in deformed bicrystals, Acta Metall., 30, 523, 1982.Google Scholar
  10. 10.
    REY, C., MUSSOT, P. and ZAOUI, A., Effects of interfaces on the plastic behaviour of metallic aggregates, Proc. Int. Conf. on the structure and properties of internal interfaces, Munich, in the press.Google Scholar
  11. 11.
    SACHS, G., Zur Ableitung einer Fliessbedingung, Z. VDI, 72, 734, 1928.Google Scholar
  12. 12.
    TAYLOR, G.I., Plastic strain in metals, J. Inst. Metals, 62, 307, 1938.Google Scholar
  13. 13.
    BISHOP, J.F.W. and HILL, R., A theory of the plastic distortion of a polycrystalline aggregate under combined stress, Phil. Mag., 42, 414, 1951.Google Scholar
  14. 14.
    CHIN, G.Y. and MAMMEL, W.L., Generalization and equivalence of the minimum work (Taylor) and maximum work (Bishop-Hill) principles in crystal plasticity, Trans. TMS-AIME, 245, 1211, 1969.Google Scholar
  15. 15.
    AERNOUDT, P., Calculation of deformation textures according to the Taylor Model, Textures of materials, G. Gottstein and K. Lücke Ed, I, 45, 1978.Google Scholar
  16. 16.
    GRUMBACH, M., PARNIERE, P., ROESCH, L. and SAUZAY, C., Etude des relations quantitatives entre le coefficient d'anisotropie, les cornes d'emboutissage et la texture des tôles minces d'acier extra-doux, Mem. Sci. Rev. Metallurg., 72, 241, 1975.Google Scholar
  17. 17.
    LIN, T.H., Analysis of elastic and plastic strains of a FCC crystal, J. Mech. Phys. Solids, 5, 143, 1957.Google Scholar
  18. 18.
    HONNEFF, M. and MECKING, H., A method for the determination of the active slip systems and orientation changes during single crystal deformation, Textures of materials, G. Gottstein and K. Lücke (ed), 265, Springer, 1978.Google Scholar
  19. 19.
    KOCKS, U.F. and CHANDRA, H., Slip geometry in partially constrained deformation, Acta Metall., 30, 695, 1982.Google Scholar
  20. 20.
    VAN HOUTTE, P., On the equivalence of the relaxed Taylor theory and the Bishop-Hill theory for partially contrained plastic deformation of crystals, Mat. Sci. Eng., 55, 69, 1982.Google Scholar
  21. 21.
    ASARO, R.J. and NEEDLEMAN, A., Texture development and strain hardening in rate dependent polycrystals, private communication, 1984.Google Scholar
  22. 22.
    BATDORF, S.B. and BUDIANSKY, B., A mathematical theory of plasticity based on the concept of slip, NACA TN-1871, 1949.Google Scholar
  23. 23.
    KRÖNER, E., Self-consistent scheme and graded disorder in polycrystal elasticity, J. Phys. F, 8, 2261, 1978.Google Scholar
  24. 24.
    HERSHEY, A.V., The elasticity of an isotropic aggregate of anisotropic cubic crystals, J. Appl. Mech., 21, 236, 1954.Google Scholar
  25. 25.
    KRÖNER, E., Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls, Z. Phys., 151, 504, 1958.Google Scholar
  26. 26.
    ESHELBY, J.D., The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. Roy. Soc., London, A241, 376, 1957.Google Scholar
  27. 27.
    ESHELBY, J.D., Elastic inclusions and inhomogeneities, Prog. in Sol. Mech., vol. II, I.N. Sneddon and R. Hill (ed), 87, North-Holland Pub. Co, Amsterdam, 1961.Google Scholar
  28. 28.
    HILL, R., Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, 13, 89, 1965.Google Scholar
  29. 29.
    KRÖNER, E., Zur plastischen Verformung des Vielkristalls, Acta Metall., 9, 155, 1961.Google Scholar
  30. 30.
    BUDIANSKY, B. and WU, T.T., Theoretical prediction of plastic strains of polycrystals, Proc 4th U.S. Nat. Congr. Appl. Mech., 1175, 1962.Google Scholar
  31. 31.
    HUTCHINSON, J.W., Elastic-plastic behaviour of polycrystalline metals and composites, Proc. Roy. Soc. London, A 319, 247, 1970.Google Scholar
  32. 32.
    KNEER, G., “Uber die Berechnung der Elastizitätsmoduln vielkristalliner Aggregate mit Textur, Phys. Stat. Sol., 9, 825, 1965.Google Scholar
  33. 33.
    IWAKUMA, T., and NEMAT-NASSER, S., Finite elastic-plastic deformation of polycrystalline metals, Proc. Roy. Soc., London, A 394, 87, 1984.Google Scholar
  34. 34.
    BERVEILLER, M. and ZAOUI, A., An extension of the self-consistent scheme to plastically flowing polycrystals, J. Mech. Phys. Solids, 26, 325, 1979.Google Scholar
  35. 35.
    BRETHEAU, T. and CALDEMAISON, D., Test of mechanical interaction models between polycrystal grains by means of local strain measurements, Deformation of polycrystals: Mechanisms and microstructures, N. Hansen, A. Horsewell, T. Leffers and H. Lilholt (ed), 157, Risø National Laboratory, Roskilde (Denmark), 1981.Google Scholar
  36. 36.
    BERVEILLER, M. and ZAOUI, A., Extended self-consistent schemes, Euromech 183, Villetaneuse, France, 1984.Google Scholar
  37. 37.
    HIHI, A. BERVEILLER, M., and ZAOUI, A., Une nouvelle formulation de la modélisation autocohérente de la plasticité des polycristaux métalliques, J. Mech. Theor. Appl., in the press.Google Scholar
  38. 38.
    BERVEILLER, M. and ZAOUI, A., Etude de l'anisotropie élastique, plastique et géométrique dans les polycristaux métalliques, Mechanical behaviour of anisotropic solids, J.P. Boehler (ed), 335, C.N.R.S. and Martinus Nyhoff Pub., The Hague, 1982.Google Scholar
  39. 39.
    HIRSCH, J., MUSICK, R. and LUCKE, K., Comparison between earing, R-values and 3-dimensional orientation distribution functions of copper and brass sheets, Textures of materials, G. Gottstein and K. Lücke (ed.), II. 437, Springer, 1978.Google Scholar
  40. 40.
    WENG, G.J., A micromechanical theory of grain-size dependence in metal plasticity, J. Mech. Phys. Solids, 31, 193, 1983.Google Scholar
  41. 41.
    BERVEILLER, M., HIHI, A. and ZAOUI, A., Self-consistent schemes for polycrystalline and multiphase materials plasticity, Deformation of polycrystals: Mechanisms and microstructures, N. Hansen, A. Horsewell, T. Leffers and H. Lilholt (ed), 145, Risø National Laboratory, Roskilde (Denmark), 1981.Google Scholar
  42. 42.
    BERVEILLER, M. and ZAOUI, A., Modelling of the plasticity and the texture development of two-phase metals, Deformation of mutti-phase and particle containing materials, J.B. Bilde-Sørensen, N. Hansen, A. Horsewell, T. Leffers and H. Lilholt (ed), 153, Risø National Laboratory, Roskilde (Denmark), 1983.Google Scholar
  43. 43.
    ZAOUI, A., Macroscopic plastic behaviour of microinhomogeneous materials, Plasticity to-day, A. Sawczuk and G. Bianchi (ed), 451, Elsevier Science Pub., London, 1984.Google Scholar
  44. 44.
    BERVEILLER, M. and ZAOUI, A., A simplified self-consistent scheme for the plasticity of two-phase metals, Res. Mech. Letters, 1, 119, 1981.Google Scholar
  45. 45.
    BOUCHER, S., Modules effectifs de matériaux composites quasihomogènes et quasiisotropes, constitués d'une matrice élastique et d'inclusions élastiques, Revue M., 22, 1, 1976.Google Scholar
  46. 46.
    Mc LAUGHLIN, R., A study of the differential scheme for composite materials, Int. J. Eng. Sci, 15, 237, 1977.Google Scholar
  47. 47.
    HASHIN, Z., The elastic moduli of heterogeneous materials, J. Appl. Mech., 29, 143, 1962.Google Scholar
  48. 48.
    CHRISTENSEN, R.M., and LO K.H., Solutions for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids, 27, 4, 1979.Google Scholar
  49. 49.
    DEDERICHS, P.H. and ZELLER, R., Variational treatment of the elastic constants of disordered materials, Z. Physik, 259, 103, 1973.Google Scholar
  50. 50.
    BERVEILLER, M. and ZAOUI, A., Modeling of the plastic behavior of inhomogeneous media, J. Eng. Mat. Tech., 106, 295, 1984.Google Scholar
  51. 51.
    EBERHARDT, O., The coherent potential approximation in random field theories, Continuum models of discrete systems (CMDS 3), E. Kröner and K.H. Anthony (ed), 425, University of Waterloo Press, 1980.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Andre Zaoui
    • 1
  1. 1.Laboratoire P.M.T.M. - CNRSUniversité de Paris XIIIVilletaneuseFrance

Personalised recommendations